Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevo- lutionary processes (e.g., gene duplication and loss), yet macroevolutionary considerations are rarely incor- porated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsi- monious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the number of gene duplications and losses. The existence of a polynomial delay algorithm for duplication/loss phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are NP-complete. We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both micro- and macroevolution into account. In the first phase, a gene tree is constructed from sequence data, using any of the previously known algorithms for gene phylogeny construction. In the second phase, the tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to minimize the duplication/lost cost. Components of the tree with strong support are left intact. This hybrid approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements are modest in practice because the two phase approach constrains the search space. Our hybrid
Journal of Computational Biology – Unpaywall
Published: Mar 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.