Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Oldest Paradoxes, Future Mathematics and Mysticism

Oldest Paradoxes, Future Mathematics and Mysticism A direct path that has been missed for 100 years leads from the oldest paradoxes straight to mysticism, via (the concept of) logical and mathematical truth, since the purely formal truth is an absolutely univocal, absolutely timeless and absolutely unbounded reference. I present three theses in passing: (1) logicians fail to fully appreciate the basic mathematical idea of truth and consequently push the semantic paradoxes aside. Otherwise they would have come to adopt the reflexive logic LR* right after Cantor (more on this briefly in Sect. 4. For a more precise elaboration see my Logik der Unbestimmtheiten und Paradoxien (Blau 2008)). (2) Mathematicians fail to fully appreciate the basic mathematical concept of number and push Zeno’s paradoxes aside. Otherwise they would have come to adopt linear arithmetic $${\mathbb{L}^{*}}$$ L ∗ right after Cantor (more on this briefly in Sects. 1 and 5, for further elaboration see my planned Grundparadoxien und grenzenlose Arithmetik. The technical parts are complete, yet philosophically it is as incomplete as Sect. 6). (3) Philosophers fail to fully appreciate the paradox of subject and object and push the Darwinian argument for Cartesian (mind–body)-interaction aside, otherwise they would have been en route towards mysticism since Darwin’s times (more on this in Sect. 6, for a little more precise elaboration see Blau in Die Logik der Unbestimmtheiten und Paradoxien. Synchron Publishers, Heidelberg, 2008, Ch. 1.5). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Erkenntnis Springer Journals

Oldest Paradoxes, Future Mathematics and Mysticism

Erkenntnis , Volume 79 (7) – Nov 5, 2013

Loading next page...
 
/lp/springer-journals/oldest-paradoxes-future-mathematics-and-mysticism-HOM5552Rks

References (14)

Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Philosophy; Philosophy; Epistemology; Ontology; Ethics; Logic
ISSN
0165-0106
eISSN
1572-8420
DOI
10.1007/s10670-013-9559-8
Publisher site
See Article on Publisher Site

Abstract

A direct path that has been missed for 100 years leads from the oldest paradoxes straight to mysticism, via (the concept of) logical and mathematical truth, since the purely formal truth is an absolutely univocal, absolutely timeless and absolutely unbounded reference. I present three theses in passing: (1) logicians fail to fully appreciate the basic mathematical idea of truth and consequently push the semantic paradoxes aside. Otherwise they would have come to adopt the reflexive logic LR* right after Cantor (more on this briefly in Sect. 4. For a more precise elaboration see my Logik der Unbestimmtheiten und Paradoxien (Blau 2008)). (2) Mathematicians fail to fully appreciate the basic mathematical concept of number and push Zeno’s paradoxes aside. Otherwise they would have come to adopt linear arithmetic $${\mathbb{L}^{*}}$$ L ∗ right after Cantor (more on this briefly in Sects. 1 and 5, for further elaboration see my planned Grundparadoxien und grenzenlose Arithmetik. The technical parts are complete, yet philosophically it is as incomplete as Sect. 6). (3) Philosophers fail to fully appreciate the paradox of subject and object and push the Darwinian argument for Cartesian (mind–body)-interaction aside, otherwise they would have been en route towards mysticism since Darwin’s times (more on this in Sect. 6, for a little more precise elaboration see Blau in Die Logik der Unbestimmtheiten und Paradoxien. Synchron Publishers, Heidelberg, 2008, Ch. 1.5).

Journal

ErkenntnisSpringer Journals

Published: Nov 5, 2013

There are no references for this article.