Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hyun-Woo Park, D. Bideshi, M. Wirth, Jeffrey Johnson, W. Walton, B. Federici (2005)
Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of west nile virus.The American journal of tropical medicine and hygiene, 72 6
A. Smith, A. Cámara-Artigas, D. Brune, J. Allen (2005)
Implications of high-molecular-weight oligomers of the binary toxin from Bacillus sphaericus.Journal of invertebrate pathology, 88 1
(1994)
First field occurrence of Culex pipiens resistance to Bacillus sphaericus in southern France
Charles Dinarello, Vol., Sheldon Wolff (2004)
The interleuldn-1 family: 10 years of discovery’
J.–F. Charles, M. H. Silva–Filha, C. Nielsen–LeRoux, M. J. Humphreys, C. Berry (1997)
Binding of the 51– and 42–kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp, 156
C. Nielsen-Leroux, D. Rao, J. Murphy, A. Carron, T. Mani, S. Hamon, M. Mulla (2001)
Various Levels of Cross-Resistance toBacillus sphaericus Strains in Culex pipiens(Diptera: Culicidae) Colonies Resistant to B. sphaericusStrain 2362Applied and Environmental Microbiology, 67
G. Pei, C. Oliveira, Zhiming Yuan, C. Nielsen-Leroux, M. Silva-Filha, Jianpin Yan, L. Regis (2002)
A Strain of Bacillus sphaericus Causes Slower Development of Resistance in Culex quinquefasciatusApplied and Environmental Microbiology, 68
E. Southern (1975)
Detection of specific sequences among DNA fragments separated by gel electrophoresis.Journal of molecular biology, 98 3
Zhiming Yuan, Yongmei Zhang, Q. Cai, E. Liu (2000)
High-Level Field Resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from Southern ChinaBiocontrol Science and Technology, 10
Le Tran, V. Vachon, J. Schwartz, R. Laprade (2001)
Differential Effects of pH on the Pore-Forming Properties of Bacillus thuringiensis Insecticidal Crystal ToxinsApplied and Environmental Microbiology, 67
A. Marchler-Bauer, S. Bryant (2004)
CD-Search: protein domain annotations on the flyNucleic acids research, 32 Web Server issue
Daniel Voth, R. Heinzen (2007)
Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetiiCellular Microbiology, 9
H. Agaisse, D. Lereclus (1996)
STAB‐SD: a Shine–Dalgarno sequence in the 5′ untranslated region is a determinant of mRNA stabilityMolecular Microbiology, 20
L. Nicolas, C. Nielsen-Leroux, J. Charles, A. Delécluse (1993)
Respective role of the 42- and 51-kDa components of the Bacillus sphaericus toxin overexpressed in Bacillus thuringiensis.FEMS microbiology letters, 106 3
(2003)
Nucleic Acids Encoding Coleopteran-Toxic Polypeptides and Insect-Resistant Transgenic Plants Comprising Them, Monsanto Technology
M. Wirth, J. Jiannino, B. Federici, W. Walton (2004)
Synergy between Toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus, 41
C. Oei, J. Hindley, C. Berry (1990)
An analysis of the genes encoding the 51.4- and 41.9-kDa toxins of Bacillus sphaericus 2297 by deletion mutagenesis: the construction of fusion proteins.FEMS microbiology letters, 60 3
(2003) Nucleic Acids Encoding Coleopteran-Toxic Polypeptides and Insect-Resistant Transgenic Plants Comprising Them
S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman (1990)
Basic local alignment search tool.Journal of molecular biology, 215 3
袁志明, 刘娥英 (1992)
球形芽孢杆菌(Bacillus sphaericus)对抗生素...
J. Liu, A. Porter, B. Wee, T. Thanabalu (1996)
New gene from nine Bacillus sphaericus strains encoding highly conserved 35.8-kilodalton mosquitocidal toxinsApplied and Environmental Microbiology, 62
J. Charles, M. Silva-Filha, C. Nielsen-Leroux, M. Humphreys, C. Berry (2006)
Binding of the 51- and 42-kDa individual components from the Bacillus sphaericus crystal toxin to mosquito larval midgut membranes from Culex and Anopheles sp. (Diptera: Culicidae).FEMS microbiology letters, 156 1
J. Mahillon, R. Rezsohazy, B. Hallet, J. Delcour (2005)
IS231 and otherBacillus thuringiensis transposable elements: A reviewGenetica, 93
K. Gammon, Gareth Jones, S. Hope, C. Oliveira, L. Regis, Maria Filha, B. Dancer, C. Berry (2006)
Conjugal Transfer of a Toxin-Coding Megaplasmid from Bacillus thuringiensis subsp. israelensis to Mosquitocidal Strains of Bacillus sphaericusApplied and Environmental Microbiology, 72
F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (1987)
Current Protocols in Molecular Biology, 1
M. Silva-Filha, C. Oliveira, L. Regis, Zhiming Yuan, C. Rico, C. Nielsen-Leroux (2004)
Two Bacillus sphaericus binary toxins share the midgut receptor binding site: implications for resistance of Culex pipiens complex (Diptera: Culicidae) larvae.FEMS microbiology letters, 241 2
M. Grunstein, D. Hogness (1975)
Colony hybridization: a method for the isolation of cloned DNAs that contain a specific gene.Proceedings of the National Academy of Sciences of the United States of America, 72 10
F. Wadley (1952)
Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve . 2nd ed. D. J. Finney. New York-London: Cambridge Univ. Press, 1952. 318 pp. $7.00Science
Hyun-Woo Park, D. Bideshi, Jeffrey Johnson, B. Federici (1999)
Differential enhancement of Cry2A versus Cry11A yields in Bacillus thuringiensis by use of the cry3A STAB mRNA sequence.FEMS microbiology letters, 181 2
J. Baum, C. Chu, M. Rupar, G. Brown, W. Donovan, J. Huesing, Oliver Ilagan, T. Malvar, Michael Pleau, Matthew Walters, T. Vaughn (2004)
Binary Toxins from Bacillus thuringiensis Active against the Western Corn Rootworm, Diabrotica virgifera virgifera LeConteApplied and Environmental Microbiology, 70
T. Thanabalu, Alan Porter (1996)
A Bacillus sphaericus gene encoding a novel type of mosquitocidal toxin of 31.8 kDa.Gene, 170 1
Youngnyun Kim, L. Ingram, K. Shanmugam (2007)
Construction of an Escherichia coli K-12 Mutant for Homoethanologenic Fermentation of Glucose or Xylose without Foreign GenesApplied and Environmental Microbiology, 73
M. Silva-Filha, L. Regis, C. Nielsen-Leroux, J. Charles (1995)
Low-level resistance to Bacillus sphaericus in a field-treated population of Culex quinquefasciatus (Diptera: Culicidae).Journal of Economic Entomology, 88
G. Sinegre, M. Babinot, J. M. Quermel, B. Gavan (1994)
8th Eur. Meet. Soc. Vector. Ecol., 17
R. Ellis, B. Stockhoff, L. Stamp, H. Schnepf, George Schwab, M. Knuth, Joshua Russell, G. Cardineau, K. Narva (2002)
Novel Bacillus thuringiensis Binary Insecticidal Crystal Proteins Active on Western Corn Rootworm, Diabrotica virgifera virgifera LeConteApplied and Environmental Microbiology, 68
J. Schwartz, L. Potvin, F. Coux, J. Charles, C. Berry, M. Humphreys, A. Jones, I. Bernhart, M. Serra, G. Menestrina (2001)
Permeabilization of Model Lipid Membranes by Bacillus sphaericus Mosquitocidal Binary Toxin and its Individual ComponentsThe Journal of Membrane Biology, 184
O. Arantes, D. Lereclus (1991)
Construction of cloning vectors for Bacillus thuringiensis.Gene, 108 1
C. Cokmus, E. Davidson, K. Cooper (1997)
Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells.Journal of invertebrate pathology, 69 3
R. Monnerat, Andrea Batista, Patrícia Medeiros, É. Martins, V. Melatti, L. Praça, V. Dumas, Cristiane Morinaga, C. Demo, A. Gomes, R. Falcão, C. Siqueira, J. Silva-Werneck, C. Berry (2007)
Screening of Brazilian Bacillus thuringiensis isolates active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalisBiological Control, 41
L. Masson, G. Schwab, A. Mazza, R. Brousseau, L. Potvin, J. Schwartz (2004)
A novel Bacillus thuringiensis (PS149B1) containing a Cry34Ab1/Cry35Ab1 binary toxin specific for the western corn rootworm Diabrotica virgifera virgifera LeConte forms ion channels in lipid membranes.Biochemistry, 43 38
J. Thompson, D. Higgins, T. Gibson (1994)
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic acids research, 22 22
E. Helgason, O. A. Okstad, D. A. Caugant, H. A. Johansen, A. Fouet, M. Mock, I. Hegna, A.–B. Kolsto (2000)
Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One species on the basis of genetic evidence, 66
A. Marchler-Bauer, John Anderson, P. Cherukuri, C. DeWeese-Scott, L. Geer, M. Gwadz, Siqian He, David Hurwitz, J. Jackson, Zhaoxi Ke, C. Lanczycki, Cynthia Liebert, Chunlei Liu, Fu Lu, Gabriele Marchler, M. Mullokandov, Benjamin Shoemaker, V. Simonyan, James Song, P. Thiessen, R. Yamashita, J. Yin, Dachuan Zhang, S. Bryant (2004)
CDD: a Conserved Domain Database for protein classificationNucleic Acids Research, 33
C. Oei, J. Hindley, C. Berry (1992)
Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains.Journal of general microbiology, 138 7
M. Silva-Filha, C. Nielsen-Leroux, J. Charles (1999)
Identification of the receptor for Bacillus sphaericus crystal toxin in the brush border membrane of the mosquito Culex pipiens (Diptera: Culicidae).Insect biochemistry and molecular biology, 29 8
(1993)
These include:
S. Bocs, S. Cruveiller, D. Vallenet, G. Nuel, C. Médigue (2003)
AMIGene: Annotation of MIcrobial GenesNucleic acids research, 31 13
R. Maagd, A. Bravo, C. Berry, N. Crickmore, H. Schnepf (2003)
Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria.Annual review of genetics, 37
M. Clark, P. Baumann (1990)
Deletion analysis of the 51-kilodalton protein of the Bacillus sphaericus 2362 binary mosquitocidal toxin: construction of derivatives equivalent to the larva-processed toxinJournal of Bacteriology, 172
L. Baumann, A. Broadwell, P. Baumann (1988)
Sequence analysis of the mosquitocidal toxin genes encoding 51.4- and 41.9-kilodalton proteins from Bacillus sphaericus 2362 and 2297Journal of Bacteriology, 170
(2003)
Nucleic Acids Encoding Coleopteran - Toxic Polypeptides and Insect - Resistant Transgenic Plants Comprising Them
D. Thomas, J. Morgan, J. Whipps, J. Saunders (2001)
Plasmid Transfer between Bacillus thuringiensis subsp.israelensis Strains in Laboratory Culture, River Water, and Dipteran LarvaeApplied and Environmental Microbiology, 67
T. Thanabalu, J. Hindley, J. Jackson-Yap, C. Berry (1991)
Cloning, sequencing, and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1Journal of Bacteriology, 173
A. Broadwell, P. Baumann (1986)
Sporulation-associated activation of Bacillus sphaericus larvicideApplied and Environmental Microbiology, 52
(2007)
JONES ET AL
Z. Yuan, G. Pei, L. Regis, C. Nielsen-Leroux, Q. Cai (2003)
Cross‐resistance between strains of Bacillus sphaericus but not B. thuringiensisisraelensis in colonies of the mosquito Culex quinquefasciatusMedical and Veterinary Entomology, 17
E. Davidson, C. Oei, Marian Meyer, Allan Bieber, J. Hindley, C. Berry (1990)
Interaction of the Bacillus sphaericus mosquito larvicidal proteins.Canadian journal of microbiology, 36 12
U. Laemmli (1970)
Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 227
Kim Rutherford, J. Parkhill, James Crook, T. Horsnell, P. Rice, M. Rajandream, B. Barrell (2000)
Artemis: sequence visualization and annotationBioinformatics, 16 10
D. Thomas, J. Morgan, J. Whipps, J. Saunders (2000)
Plasmid Transfer between the Bacillus thuringiensis Subspecies kurstaki andtenebrionis in Laboratory Culture and Soil and in Lepidopteran and Coleopteran LarvaeApplied and Environmental Microbiology, 66
Highly pathogenic strains of Bacillus sphaericus produce the mosquitocidal Bin proteins, but resistance to this toxin can be produced under laboratory and field conditions. Analysis of strains able to overcome this resistance revealed the presence of a previously undescribed type of two‐component toxin. One subunit, Cry48Aa1, is related to the 3‐domain crystal toxins of Bacillus thuringiensis. Uniquely for this type of protein, insect toxicity is only achieved in the presence of a second, accessory protein, Cry49Aa1. This protein is itself related to both the binary toxin of B. sphaericus and to Cry35 and Cry36 of B. thuringiensis, none of which require interaction with Cry48Aa1‐like proteins for their activity. The necessity for both Cry48Aa1 and Cry49Aa1 components for pathogenicity, therefore, indicates an unprecedented interaction to generate toxicity. Despite high potency for purified Cry48Aa1/Cry49Aa1 proteins (LC50 for third instar Culex quinquefasciatus larvae: 15.9 ng/ml and 6.3 ng/ml respectively), bacteria producing them show suboptimal mosquitocidal activity due to low‐level Cry48Aa1 production. This new toxin combination may indicate a fortuitous combination of members of the gene families that encode 3‐domain Cry toxins and Binary‐like toxins, permitting the “mix‐and‐match” evolution of a new component in the mosquitocidal armoury.— Jones G. W., Nielsen‐Leroux, C., Yang, Y., Yuan, Z., Dumas, V. F., Monnerat, R. G., Colin Berry C. A new Cry toxin with a unique two‐component dependency from Bacillus sphaericus. FASEB J. 21, 4112–4120 (2007)
The FASEB journal – Wiley
Published: Dec 1, 2007
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.