Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Rouvière, R. Wolfe (1988)
Novel biochemistry of methanogenesis.The Journal of biological chemistry, 263 17
(1987)
Physiologisch-biochemische Untersuchungen an dem cxtrem thermophilen archaebakteriellen Sulfatreduzierer Archaeoglobus fulgidus
R. Schauder, A. Preuss, M. Jetten, G. Fuchs (1988)
Oxidative and reductive acetyl-CoA/carbon monoxide dehydrogenase pathway in Desulphovibrio autotrophicum. 2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase.Archives of Microbiology, 151
N. Schauer, J. Ferry, J. Honek, W. Orme-Johnson, C. Walsh (1986)
Mechanistic studies of the coenzyme F420 reducing formate dehydrogenase from Methanobacterium formicicum.Biochemistry, 25 22
R. Thauer (1988)
Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria.European journal of biochemistry, 176 3
R. Thauer (1988)
Citric-acid cycle, 50 years onFEBS Journal, 176
T. Bobik, Ralph Wolfe (1988)
Physiological importance of the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate in the reduction of carbon dioxide to methane in Methanobacterium.Proceedings of the National Academy of Sciences of the United States of America, 85 1
D. Möller-Zinkhan, R. Thauer (1988)
Membrane-bound NADPH dehydrogenase- and ferredoxin: NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgateiArchives of Microbiology, 150
W. Jones, D. Nagle, W. Whitman (1987)
Methanogens and the diversity of archaebacteria.Microbiological reviews, 51 1
Astrid Brandis-Heep, Norbert Gebhardt, R. Thauer, F. Widdel, N. Pfennig (1983)
Anaerobic acetate oxidation to CO2 by Desulfobacter postgateiArchives of Microbiology, 136
J. Zeikus, G. Fuchs, W. Kenealy, R. Thauer (1977)
Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicumJournal of Bacteriology, 132
C. Drift, J. Keltjens, G. Vogels (1987)
Intermediary Steps in Methanogenesis
B. Tindall, K. Stetter, M. Collins (1989)
A Novel, Fully Saturated Menaquinone from the Thermophilic, Sulphate-reducing Archaebacterium Archaeoglobus fulgidusMicrobiology, 135
D. Livingston, J. Fox, W. Orme-Johnson, C. Walsh (1987)
8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 2. Kinetic and hydrogen-transfer studies.Biochemistry, 26 14
M. Donnelly, R. Wolfe (1986)
The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide.The Journal of biological chemistry, 261 35
L. Wit, A. Eker (1987)
8-Hydroxy-5-deazaflavin-dependent electron transfer in the extreme halophile Halobacterium cutirubrumFems Microbiology Letters, 48
L. Daniels, G. Fuchs, R. Thauer, J. Zeikus (1977)
Carbon Monoxide Oxidation by Methanogenic BacteriaJournal of Bacteriology, 132
L. Gloss, R. Hausinger (1987)
Reduction potential characterization of methanogen factor 390Fems Microbiology Letters, 48
A. Spormann, R. Thauer (1988)
Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidansArchives of Microbiology, 150
K. Stetter (1988)
Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteriaSystematic and Applied Microbiology, 10
R. Fischer, R. Thauer (1989)
Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeriArchives of Microbiology, 151
J. Fox, D. Livingston, W. Orme-Johnson, C. Walsh (1987)
8-Hydroxy-5-deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum: 1. Purification and characterization.Biochemistry, 26 14
K. Stetter, G. Lauerer, M. Thomm, A. Neuner (1987)
Isolation of Extremely Thermophilic Sulfate Reducers: Evidence for a Novel Branch of ArchaebacteriaScience, 236
C. Walsh (1986)
Naturally occurring 5-deazaflavin coenzymes: biological redox rolesAccounts of Chemical Research, 19
G. Börner, M. Karrasch, R. Thauer (1989)
Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeriFEBS Letters, 244
L. Achenbach-Richter, K. Stetter, C. Woese (1987)
A possible biochemical missing link among archaebacteriaNature, 327
H. Wood, S. Ragsdale, E. Pezacka (1986)
The acetyl-CoA pathway of autotrophic growthFems Microbiology Letters, 39
J. Leigh, K. Rinehart, R. Wolfe (1985)
Methanofuran (carbon dioxide reduction factor), a formyl carrier in methane production from carbon dioxide in Methanobacterium.Biochemistry, 24 4
S. Länge, R. Scholtz, G. Fuchs (1988)
Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicumArchives of Microbiology, 151
N. Speich, H. Trüper (1988)
Adenylylsulphate Reductase in a Dissimilatory Sulphate-reducing ArchaebacteriumMicrobiology, 134
G. Fuchs (1986)
CO2 fixation in acetogenic bacteria: Variations on a themeFems Microbiology Letters, 39
A. Dimarco, M. Donnelly, R. Wolfe (1986)
Purification and properties of the 5,10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicumJournal of Bacteriology, 168
D. Möller, R. Schauder, G. Fuchs, R. Thauer (1987)
Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfateArchives of Microbiology, 148
Norbert Gebhardt, R. Thauer, D. Linder, P. Kaulfers, N. Pfennig (1985)
Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidansArchives of Microbiology, 141
R. White (1988)
Structural diversity among methanofurans from different methanogenic bacteriaJournal of Bacteriology, 170
RS Wolfe (1985)
10.1016/0968-0004(85)90068-4Trends Biochem Sci, 10
A. Dimarco, T. Bobik, R. Wolfe (1990)
UNUSUAL COENZYMES OF METHANOGENESISAnnual Review of Biochemistry, 59
J. Keltjens, G. Vogels (1988)
Methanopterin and methanogenic bacteria.BioFactors, 1 1
HG Wood (1986)
10.1111/j.1574-6968.1986.tb01865.xFEMS Microbiol Rev, 39
R. Schauder, B. Eikmanns, R. Thauer, F. Widdel, G. Fuchs (1986)
Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycleArchives of Microbiology, 145
P. Hartzell, Ginta Zvilius, J. Escalante‐Semerena, M. Donnelly (1985)
Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum.Biochemical and biophysical research communications, 133 3
R Thauer, D Zinkhan, A. Spormann (1989)
Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria.Annual review of microbiology, 43
C. Bode, H. Goebell, E. Stähler (1968)
Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode, 6
Bernhard Kräutler, Hans-Peter Kohler, E. Stupperich (1988)
5'-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria.European journal of biochemistry, 176 2
(1989)
Energy metabolism of sulfate-reducing bacteria
AM Spormann (1989)
10.1007/BF00456100Arch Microbiol, 152
G. Zellner, E. Stackebrandt, H. Kneifel, P. Messner, U. Sleytr, E. Macario, H. Zabel, K. Stetter, J. Winter (1989)
Isolation and Characterization of a Thermophilic, Sulfate Reducing Archaebacterium, Archaeoglobus fulgidus Strain ZSystematic and Applied Microbiology, 11
L. Eirich, Roberts Dugger (1984)
Purification and properties of an F420-dependent NADP reductase from methanobacterium thermoautotrophicumBiochimica et Biophysica Acta, 802
203 152 152 4 4 D. Möller-Zinkhan G. Börner R. K. Thauer Laboratorium für Mikrobiologie, FB Biologie Philipps-Universität Karl-von-Frisch-Strasse D-3550 Marburg Germany Abstract Archaeoglobus fulgidus is an extremely thermophilic archaebacterium that can grow at the expense of lactate oxidation with sulfate to CO 2 and H 2 S. The organism contains coenzyme F 420 , tetrahydromethanopterin, and methanofuran which are coenzymes previously thought to be unique for methanogenic bacteria. We report here that the bacterium contains methylenetetrahydromethanopterin: F 420 oxidoreductase (20 U/mg), methenyltetrahydromethanopterin cyclohydrolase (0.9 U/mg), formyltetrahydromethanopterin: methanofuran formyltransferase (4.4 U/mg), and formylmethanofuran: benzyl viologen oxidoreductase (35 mU/mg). Besides these enzymes carbon monoxide: methyl viologen oxidoreductase (5 U/mg), pyruvate: methyl viologen oxidoreductase (0.7 U/mg), and membranebound lactate: dimethylnaphthoquinone oxidoreductase (0.1 U/mg) were found. 2-Oxoglutarate dehydrogenase, which is a key enzyme of the citric acid cycle, was not detectable. From the enzyme outfit it is concluded that in A. fulgidus lactate is oxidized to CO 2 via a modified acetyl-CoA/carbon monoxide dehydrogenase pathway involving C 1 -intermediates otherwise only used by methanogenic bacteria.
Archives of Microbiology – Springer Journals
Published: Sep 1, 1989
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.