Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Santi, W. Schmidt (2009)
Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots.The New phytologist, 183 4
Sun Kim, T. Punshon, A. Lanzirotti, Liangtao Li, J. Alonso, J. Ecker, J. Kaplan, M. Guerinot (2006)
Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1Science, 314
J. McElver, I. Tzafrir, G. Aux, R. Rogers, Carl Ashby, Kelsey Smith, Carla Thomas, Amy Schetter, Qingyou Zhou, M. Cushman, J. Tossberg, T. Nickle, J. Levin, M. Law, D. Meinke, D. Patton (2001)
Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana.Genetics, 159 4
E. P. Colangelo, M. L. Guerinot (2004)
The essential bHLH protein FIT1 is required for the iron deficiency responsePlant Cell, 16
Aron Marchler-Bauer, M. Derbyshire, Noreen Gonzales, Shennan Lu, F. Chitsaz, Lewis Geer, Renata Geer, Jane He, M. Gwadz, David Hurwitz, C. Lanczycki, Fu Lu, Gabriele Marchler, James Song, N. Thanki, Zhouxi Wang, R. Yamashita, Dachuan Zhang, Chanjuan Zheng, S. Bryant (2014)
CDD: NCBI's conserved domain databaseNucleic Acids Research, 43
I. Baxter, P. Hosmani, A. Rus, Brett Lahner, J. Borevitz, B. Muthukumar, M. Mickelbart, L. Schreiber, R. Franke, D. Salt (2009)
Root Suberin Forms an Extracellular Barrier That Affects Water Relations and Mineral Nutrition in ArabidopsisPLoS Genetics, 5
Takehiro Kamiya, M. Borghi, Peng Wang, John Danku, Lothar Kalmbach, P. Hosmani, Sadaf Naseer, T. Fujiwara, Niko Geldner, D. Salt (2015)
The MYB36 transcription factor orchestrates Casparian strip formationProceedings of the National Academy of Sciences, 112
Ning Wang, Yan Cui, Yi Liu, Huajie Fan, Juan Du, Zongan Huang, Youxi Yuan, Huilan Wu, H. Ling (2013)
Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana.Molecular plant, 6 2
H. Schmidt, C. Günther, Michael Weber, Cornelia Spoerlein, S. Loscher, C. Böttcher, R. Schobert, S. Clemens (2014)
Metabolome Analysis of Arabidopsis thaliana Roots Identifies a Key Metabolic Pathway for Iron AcquisitionPLoS ONE, 9
P. Mace, Katrin Linke, R. Feltham, Frances-Rose Schumacher, Clyde Smith, D. Vaux, J. Silke, C. Day (2008)
Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment*Journal of Biological Chemistry, 283
J. C. Danku, B. Lahner, E. Yakubova, D. Salt, F. J. M. Maathuis (2013)
Plant Mineral Nutrients: Methods and Protocols
A. Sivitz, Claudia Grinvalds, Marie Barberon, C. Curie, G. Vert (2011)
Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses.The Plant journal : for cell and molecular biology, 66 6
Dai-Yin Chao, K. Gable, Ming Chen, I. Baxter, Charles Dietrich, E. Cahoon, M. Guerinot, Brett Lahner, Shiyou Lü, J. Markham, Joe Morrissey, Gongshe Han, Sita Gupta, J. Harmon, J. Jaworski, T. Dunn, D. Salt (2011)
Sphingolipids in the Root Play an Important Role in Regulating the Leaf Ionome in Arabidopsis thaliana[W][OA]Plant Cell, 23
N. Zheng, Ping Wang, P. Jeffrey, N. Pavletich (2000)
Structure of a c-Cbl–UbcH7 Complex RING Domain Function in Ubiquitin-Protein LigasesCell, 102
Hong-yu Wang, M. Klatte, M. Jakoby, H. Bäumlein, B. Weisshaar, P. Bauer (2007)
Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thalianaPlanta, 226
S. Clough, A. Bent (1998)
Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.The Plant journal : for cell and molecular biology, 16 6
Q. Yin, Su-Chang Lin, B. Lamothe, Miao Lu, Y. Lo, Greg Hura, Lixin Zheng, R. Rich, Alejandro Campos, D. Myszka, M. Lenardo, B. Darnay, Hao Wu (2009)
E2 interaction and dimerization in the crystal structure of TRAF6Nature Structural &Molecular Biology, 16
D. Eide, M. Broderius, J. Fett, M. Guerinot (1996)
A novel iron-regulated metal transporter from plants identified by functional expression in yeast.Proceedings of the National Academy of Sciences of the United States of America, 93 11
D. Spratt, R. Martinez-Torres, Y. Noh, P. Mercier, N. Manczyk, K. Barber, J. Aguirre, L. Burchell, A. Purkiss, H. Walden, G. Shaw (2013)
A molecular explanation for the recessive nature of parkin-linked Parkinson’s diseaseNature Communications, 4
Rebekah Rampey, A. Woodward, Brianne Hobbs, Megan Tierney, Brett Lahner, D. Salt, B. Bartel (2006)
An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate ResponsivenessGenetics, 174
R. Deshaies, C. Joazeiro (2009)
RING domain E3 ubiquitin ligases.Annual review of biochemistry, 78
N. Robinson, Catherine Procter, E. Connolly, M. Guerinot (1999)
A ferric-chelate reductase for iron uptake from soilsNature, 397
P. Kersey, James Allen, Mikkel Christensen, Paul Davis, Lee Falin, Christoph Grabmueller, D. Hughes, J. Humphrey, A. Kerhornou, Julia Khobova, Nicholas Langridge, Mark McDowall, U. Maheswari, G. Maslen, M. Nuhn, C. Ong, Michael Paulini, Helder Pedro, I. Toneva, M. Tuli, Brandon Walts, Gareth Williams, Derek Wilson, K. Youens-Clark, Marcela Monaco, J. Stein, Xuehong Wei, D. Ware, D. Bolser, K. Howe, Eugene Kulesha, D. Lawson, D. Staines (2013)
Ensembl Genomes 2013: scaling up access to genome-wide dataNucleic Acids Research, 42
Rossana Henriques, J. Jásik, M. Klein, E. Martinoia, U. Feller, J. Schell, M. Pais, C. Koncz (2002)
Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defectsPlant Molecular Biology, 50
A. Saldanha (2004)
Java Treeview - extensible visualization of microarray dataBioinformatics, 20 17
D. Huang, Brad Sherman, R. Lempicki (2008)
Systematic and integrative analysis of large gene lists using DAVID bioinformatics resourcesNature Protocols, 4
Ying Yi, M. Guerinot (1996)
Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency.The Plant journal : for cell and molecular biology, 10 5
G. Vert, N. Grotz, F. Dedaldechamp, F. Gaymard, M. L. Guerinot, J.-F. Briat, C. Curie (2002)
IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growthPlant Cell, 14
A. Becker, Dai-Yin Chao, Xu Zhang, D. Salt, I. Baxter (2011)
Bulk Segregant Analysis Using Single Nucleotide Polymorphism MicroarraysPLoS ONE, 6
Da Huang, Brad Sherman, R. Lempicki (2008)
Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene listsNucleic Acids Research, 37
Jie Zhang, Bing Liu, Mengshu Li, Dongru Feng, Hong-Lei Jin, Peng Wang, Jun Liu, Feng Xiong, Jinfa Wang, Hong-Bin Wang (2015)
The bHLH Transcription Factor bHLH104 Interacts with IAA-LEUCINE RESISTANT3 and Modulates Iron Homeostasis in ArabidopsisPlant Cell, 27
Elizabeth Colangelo, M. Guerinot (2004)
The Essential Basic Helix-Loop-Helix Protein FIT1 Is Required for the Iron Deficiency ResponseThe Plant Cell Online, 16
Hui Tian, I. Baxter, Brett Lahner, A. Reinders, D. Salt, J. Ward (2010)
Arabidopsis NPCC6/NaKR1 Is a Phloem Mobile Metal Binding Protein Necessary for Phloem Function and Root Meristem Maintenance[C][W]Plant Cell, 22
M. N. Hindt, M. L. Guerinot (2012)
Getting a sense for signals: regulation of the plant iron deficiency responseBiochim. Biophys. Acta, Mol. Cell Res., 1823
E. Steers, P. Cuatrecasas (1974)
[34] β-GalactosidaseMethods in Enzymology, 34
N. Schmid, R. Giehl, Stefanie Döll, H. Mock, Nadine Strehmel, D. Scheel, Xiaole Kong, R. Hider, N. Wirén (2013)
Feruloyl-CoA 6′-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis1[C][W][OPEN]Plant Physiology, 164
C. Varotto, D. Maiwald, P. Pesaresi, P. Jahns, F. Salamini, D. Leister (2002)
The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana.The Plant journal : for cell and molecular biology, 31 5
G. Vert, N. Grotz, F. Dédaldéchamp, F. Gaymard, M. Guerinot, J. Briat, C. Curie (2002)
IRT1, an Arabidopsis Transporter Essential for Iron Uptake from the Soil and for Plant Growth Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.001388.The Plant Cell Online, 14
Korshunova Yo, D. Eide, Clark Wg, M. Guerinot, H. Pakrasi (1999)
The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate rangePlant Molecular Biology, 40
P. Fourcroy, Patricia Sisó-Terraza, Damien Sudre, M. Savirón, Guilhem Reyt, F. Gaymard, A. Abadı́a, J. Abadía, A. Álvarez-Fernández, J. Briat (2014)
Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency.The New phytologist, 201 1
McElver (2001)
Genetics, 159
George Wright, R. Simon (2003)
A random variance model for detection of differential gene expression in small microarray experimentsBioinformatics, 19 18
Jorge Rodríguez-Celma, Wen-Dar Lin, Gu Fu, J. Abadía, A. López-Millán, W. Schmidt (2013)
Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula1[C][W]Plant Physiology, 162
M. Borghi, A. Rus, D. Salt (2011)
Loss-of-Function of Constitutive Expresser of Pathogenesis Related Genes5 Affects Potassium Homeostasis in Arabidopsis thalianaPLoS ONE, 6
H. Marschner, V. Römheld, H. Ossenberg-Neuhaus (1982)
Rapid Method for Measuring Changes in pH and Reducing Processes Along Roots of Intact PlantsZeitschrift für Pflanzenphysiologie, 105
M. Eisen, P. Spellman, P. Brown, D. Botstein (1998)
Cluster analysis and display of genome-wide expression patterns.Proceedings of the National Academy of Sciences of the United States of America, 95 25
Maria Hindt, M. Guerinot (2012)
Getting a sense for signals: regulation of the plant iron deficiency response.Biochimica et biophysica acta, 1823 9
Youquan Yuan, Juan Zhang, Daole Wang, H. Ling (2005)
AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plantsCell Research, 15
M. Jakoby, Hong-yu Wang, W. Reidt, B. Weisshaar, P. Bauer (2004)
FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thalianaFEBS Letters, 577
Brett Lahner, Jiming Gong, M. Mahmoudian, Ellen Smith, Khush Abid, E. Rogers, M. Guerinot, J. Harper, J. Ward, L. McIntyre, J. Schroeder, D. Salt (2003)
Genomic scale profiling of nutrient and trace elements in Arabidopsis thalianaNature Biotechnology, 21
Takanori Kobayashi, Seiji Nagasaka, T. Senoura, R. Itai, H. Nakanishi, N. Nishizawa (2013)
Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulationNature Communications, 4
A. Salahudeen, Joel Thompson, J. Ruiz, He-Wen Ma, L. Kinch, Qiming Li, N. Grishin, R. Bruick (2009)
An E3 Ligase Possessing an Iron-Responsive Hemerythrin Domain Is a Regulator of Iron HomeostasisScience, 326
Terri Long, Hironaka Tsukagoshi, Wolfgang Busch, Brett Lahner, D. Salt, P. Benfey (2010)
The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots[W][OA]Plant Cell, 22
D, lower case letters indicate significant differences at p<0.05 (ANOVA with Tukey's). Error bars indicate SE
H. Lichtenthaler (1987)
CHLOROPHYLL AND CAROTENOIDS: PIGMENTS OF PHOTOSYNTHETIC BIOMEMBRANESMethods in Enzymology, 148
Q. Yin, B. Lamothe, B. Darnay, Hao Wu (2009)
Structural basis for the lack of E2 interaction in the RING domain of TRAF2.Biochemistry, 48 44
Dai-Yin Chao, Yi Chen, Jiugeng Chen, Shulin Shi, Ziru Chen, Chengcheng Wang, John Danku, F. Zhao, D. Salt (2014)
Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in PlantsPLoS Biology, 12
Mark Larkin, G. Blackshields, N. Brown, R. Chenna, P. McGettigan, Hamish McWilliam, F. Valentin, Iain Wallace, A. Wilm, R. Lopez, J. Thompson, T. Gibson, D. Higgins (2007)
Clustal W and Clustal X version 2.0Bioinformatics, 23 21
Youxi Yuan, Huilan Wu, Ning Wang, J. Li, Weina Zhao, Juan Du, Daowen Wang, H. Ling (2008)
FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in ArabidopsisCell Research, 18
C. Zamioudis, J. Hanson, C. Pieterse (2014)
β-Glucosidase BGLU42 is a MYB72-dependent key regulator of rhizobacteria-induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots.The New phytologist, 204 2
Christine Palmer, Maria Hindt, H. Schmidt, S. Clemens, M. Guerinot (2013)
MYB10 and MYB72 Are Required for Growth under Iron-Limiting ConditionsPLoS Genetics, 9
A. Vashisht, Kimberly Zumbrennen, Xinhua Huang, David Powers, A. Durazo, Dahui Sun, N. Bhaskaran, A. Persson, M. Uhlén, O. Sangfelt, C. Spruck, E. Leibold, J. Wohlschlegel (2009)
Control of Iron Homeostasis by an Iron-Regulated Ubiquitin LigaseScience, 326
Dai-Yin Chao, Adriano Silva, I. Baxter, Yu Huang, M. Nordborg, John Danku, Brett Lahner, Elena Yakubova, D. Salt (2012)
Genome-Wide Association Studies Identify Heavy Metal ATPase3 as the Primary Determinant of Natural Variation in Leaf Cadmium in Arabidopsis thalianaPLoS Genetics, 8
Harmutk (1987)
Methods Enzymol., 34
Devarshi Selote, Rozalynne Samira, Anna Matthiadis, J. Gillikin, Terri Long (2014)
Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors1[OPEN]Plant Physiology, 167
Anna Matthiadis, Terri Long (2016)
Further insight into BRUTUS domain composition and functionalityPlant Signaling & Behavior, 11
Xiaoli Li, Huimin Zhang, Qin Ai, Gang Liang, Diqiu Yu (2016)
Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana1Plant Physiology, 170
Iron (Fe) is required for plant health, but it can also be toxic when present in excess. Therefore, Fe levels must be tightly controlled. The Arabidopsis thaliana E3 ligase BRUTUS (BTS) is involved in the negative regulation of the Fe deficiency response and we show here that the two A. thaliana BTS paralogs, BTS LIKE1 (BTSL1) and BTS LIKE2 (BTSL2) encode proteins that act redundantly as negative regulators of the Fe deficiency response. Loss of both of these E3 ligases enhances tolerance to Fe deficiency. We further generated a triple mutant with loss of both BTS paralogs and a partial loss of BTS expression that exhibits even greater tolerance to Fe-deficient conditions and increased Fe accumulation without any resulting Fe toxicity effects. Finally, we identified a mutant carrying a novel missense mutation of BTS that exhibits an Fe deficiency response in the root when grown under both Fe-deficient and Fe-sufficient conditions, leading to Fe toxicity when plants are grown under Fe-sufficient conditions.
Metallomics – Royal Society of Chemistry
Published: Jul 19, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.