Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

SMN Tudor domain structure and its interaction with the Sm proteins

SMN Tudor domain structure and its interaction with the Sm proteins Spinal muscular atrophy (SMA) is a common motor neuron disease that results from mutations in the Survival of Motor Neuron (SMN) gene. The SMN protein plays a crucial role in the assembly of spliceosomal uridine-rich small nuclear ribonucleoprotein (U snRNP) complexes via binding to the spliceosomal Sm core proteins. SMN contains a central Tudor domain that facilitates the SMN–Sm protein interaction. A SMA-causing point mutation (E134K) within the SMN Tudor domain prevents Sm binding. Here, we have determined the three-dimensional structure of the Tudor domain of human SMN. The structure exhibits a conserved negatively charged surface that is shown to interact with the C-terminal Arg and Gly-rich tails of Sm proteins. The E134K mutation does not disrupt the Tudor structure but affects the charge distribution within this binding site. An intriguing structural similarity between the Tudor domain and the Sm proteins suggests the presence of an additional binding interface that resembles that in hetero-oligomeric complexes of Sm proteins. Our data provide a structural basis for a molecular defect underlying SMA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Structural & Molecular Biology Springer Journals

SMN Tudor domain structure and its interaction with the Sm proteins

Loading next page...
 
/lp/springer-journals/smn-tudor-domain-structure-and-its-interaction-with-the-sm-proteins-IaHibzaQX6

References (30)

Publisher
Springer Journals
Copyright
Copyright © 2001 by Nature America Inc.
Subject
Life Sciences; Life Sciences, general; Biochemistry, general; Protein Structure; Membrane Biology; Biological Microscopy
ISSN
1545-9993
eISSN
1545-9985
DOI
10.1038/83014
Publisher site
See Article on Publisher Site

Abstract

Spinal muscular atrophy (SMA) is a common motor neuron disease that results from mutations in the Survival of Motor Neuron (SMN) gene. The SMN protein plays a crucial role in the assembly of spliceosomal uridine-rich small nuclear ribonucleoprotein (U snRNP) complexes via binding to the spliceosomal Sm core proteins. SMN contains a central Tudor domain that facilitates the SMN–Sm protein interaction. A SMA-causing point mutation (E134K) within the SMN Tudor domain prevents Sm binding. Here, we have determined the three-dimensional structure of the Tudor domain of human SMN. The structure exhibits a conserved negatively charged surface that is shown to interact with the C-terminal Arg and Gly-rich tails of Sm proteins. The E134K mutation does not disrupt the Tudor structure but affects the charge distribution within this binding site. An intriguing structural similarity between the Tudor domain and the Sm proteins suggests the presence of an additional binding interface that resembles that in hetero-oligomeric complexes of Sm proteins. Our data provide a structural basis for a molecular defect underlying SMA.

Journal

Nature Structural & Molecular BiologySpringer Journals

Published: Jan 1, 2001

There are no references for this article.