Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Tjandra, J. Omichinski, A. Gronenborn, G. Clore, A. Bax (1997)
Use of dipolar 1H–15N and 1H–13C couplings in the structure determination of magnetically oriented macromolecules in solutionNature Structural Biology, 4
K. Talbot, I. Miguel-Aliaga, P. Mohaghegh, C. Ponting, K. Davies (1998)
Characterization of a gene encoding survival motor neuron (SMN)-related protein, a constituent of the spliceosome complex.Human molecular genetics, 7 13
J. Pearn (1980)
CLASSIFICATION OF SPINAL MUSCULAR ATROPHIESThe Lancet, 315
H. Brahms, J. Raymackers, A. Union, F. Keyser, L. Meheus, R. Lührmann (2000)
The C-terminal RG Dipeptide Repeats of the Spliceosomal Sm Proteins D1 and D3 Contain Symmetrical Dimethylarginines, Which Form a Major B-cell Epitope for Anti-Sm Autoantibodies*The Journal of Biological Chemistry, 275
D. Bühler, V. Raker, Reinhard Lührmann, Utz Fischer (1999)
Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy.Human molecular genetics, 8 13
N. Farrow, R. Muhandiram, A. Singer, S. Pascal, C. Kay, G. Gish, S. Shoelson, T. Pawson, J. Forman-Kay, L. Kay (1994)
Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.Biochemistry, 33 19
R. Laskowski, J.AntoonC. Rullmann, M. MacArthur, R. Kaptein, J. Thornton (1996)
AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMRJournal of Biomolecular NMR, 8
L. Brzustowicz, T. Lehner, L. Castilla, G. Penchaszadeh, K. Wilhelmsen, R. Daniels, K. Davies, Mark Leppert, F. Ziter, D. Wood, V. Dubowitz, K. Zerres, I. Hausmanowa-Petrusewicz, J. Ott, T. Munsat, T. Gilliam (1990)
Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q1 1.213.3Nature, 344
A. Nicholls, K. Sharp, B. Honig (1991)
Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbonsProteins: Structure, 11
Zhihong Liu, Maria Macias, Matthew Bottomley, G. Stier, J. Linge, Michael Nilges, Peer Bork, Michael Sattler (1999)
The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins.Structure, 7 12
M. Ottiger, F. Delaglio, A. Bax (1998)
Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra.Journal of magnetic resonance, 131 2
F. Delaglio, S. Grzesiek, G. Vuister, G. Zhu, John Pfeifer, A. Bax (1995)
NMRPipe: A multidimensional spectral processing system based on UNIX pipesJournal of Biomolecular NMR, 6
M. Nilges, S. O’Donoghue (1998)
Ambiguous NOEs and automated NOE assignmentProgress in Nuclear Magnetic Resonance Spectroscopy, 32
Reto Koradi, M. Billeter, K. Wüthrich (1996)
MOLMOL: a program for display and analysis of macromolecular structures.Journal of molecular graphics, 14 1
L. Pellizzoni, B. Charroux, G. Dreyfuss (1999)
SMN mutants of spinal muscular atrophy patients are defective in binding to snRNP proteins.Proceedings of the National Academy of Sciences of the United States of America, 96 20
M. Sattler, J. Schleucher, C. Griesinger (1999)
Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradientsProgress in Nuclear Magnetic Resonance Spectroscopy, 34
C. Ponting (1997)
Tudor domains in proteins that interact with RNA.Trends in biochemical sciences, 22 2
U. Fischer, Qing Liu, G. Dreyfuss (1997)
The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP BiogenesisCell, 90
C. Bartels, Tai-he Xia, M. Billeter, P. Güntert, K. Wüthrich (1995)
The program XEASY for computer-supported NMR spectral analysis of biological macromoleculesJournal of Biomolecular NMR, 6
V. Raker, K. Hartmuth, B. Kastner, R. Lührmann (1999)
Spliceosomal U snRNP Core Assembly: Sm Proteins Assemble onto an Sm Site RNA Nonanucleotide in a Specific and Thermodynamically Stable MannerMolecular and Cellular Biology, 19
D. Neri, T. Szyperski, Gottfried Otting, Hans Senn, Kurt Wüthrich (1989)
Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling.Biochemistry, 28 19
W. Friesen, G. Dreyfuss (2000)
Specific Sequences of the Sm and Sm-like (Lsm) Proteins Mediate Their Interaction with the Spinal Muscular Atrophy Disease Gene Product (SMN)*The Journal of Biological Chemistry, 275
Qing Liu, U. Fischer, Fan Wang, G. Dreyfuss (1997)
The Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal snRNP ProteinsCell, 90
S. Lefebvre, L. Bürglen, S. Reboullet, O. Clermont, P. Burlet, L. Viollet, B. Bénichou, C. Cruaud, P. Millasseau, M. Zeviani, D. Paslier, J. Frézal, D. Cohen, J. Weissenbach, A. Munnich, J. Melki (1995)
Identification and characterization of a spinal muscular atrophy-determining geneCell, 80
Axel Brüngera, Paul Adamsb, G. Clorec, Warren DeLanod, Piet Grose, Ralf Grosse-Kunstlevea, Jian-Sheng Jiangf, John Kuszewskic, Michael Nilgesg, Navraj Pannuh, Randy Readi, Luke Riceb, Thomas Simonsonj, Gregory Warrenb (1998)
Crystallography & NMR system: A new software suite for macromolecular structure determination.Acta crystallographica. Section D, Biological crystallography, 54 Pt 5
G. Neubauer, A. King, J. Rappsilber, C. Calvio, M. Watson, P. Ajuh, J. Sleeman, A. Lamond, M. Mann (1998)
Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complexNature Genetics, 20
L. Pellizzoni, N. Kataoka, B. Charroux, G. Dreyfuss (1998)
A Novel Function for SMN, the Spinal Muscular Atrophy Disease Gene Product, in Pre-mRNA SplicingCell, 95
J. Melki, S. Abdelhak, P. Sheth, M. Bachelot, P. Burlet, A. Marcadet, J. Aicardi, A. Barois, J. Carriere, M. Fardeau, D. Fontán, G. Ponsot, T. Billette, C. Angelini, C. Barbosa, G. Ferrière, G. Lanzi, A. Ottolini, M. Babron, D. Cohen, A. Hanauer, F. Clerget-Darpoux, M. Lathrop, A. Munnich, J. Frézal (1990)
Gene for chronic proximal spinal muscular atrophies maps to chromosome 5qNature, 344
G. Clore, A. Gronenborn (1998)
Determining the structures of large proteins and protein complexes by NMR.Trends in biotechnology, 16 1
C. Kambach, S. Walke, R. Young, J. Avis, E. Fortelle, V. Raker, R. Lührmann, Jade Li, K. Nagai (1999)
Crystal Structures of Two Sm Protein Complexes and Their Implications for the Assembly of the Spliceosomal snRNPsCell, 96
Spinal muscular atrophy (SMA) is a common motor neuron disease that results from mutations in the Survival of Motor Neuron (SMN) gene. The SMN protein plays a crucial role in the assembly of spliceosomal uridine-rich small nuclear ribonucleoprotein (U snRNP) complexes via binding to the spliceosomal Sm core proteins. SMN contains a central Tudor domain that facilitates the SMN–Sm protein interaction. A SMA-causing point mutation (E134K) within the SMN Tudor domain prevents Sm binding. Here, we have determined the three-dimensional structure of the Tudor domain of human SMN. The structure exhibits a conserved negatively charged surface that is shown to interact with the C-terminal Arg and Gly-rich tails of Sm proteins. The E134K mutation does not disrupt the Tudor structure but affects the charge distribution within this binding site. An intriguing structural similarity between the Tudor domain and the Sm proteins suggests the presence of an additional binding interface that resembles that in hetero-oligomeric complexes of Sm proteins. Our data provide a structural basis for a molecular defect underlying SMA.
Nature Structural & Molecular Biology – Springer Journals
Published: Jan 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.