Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Very frequently the most costly components in a chemical reaction are not the starting materials or the reaction products, but the catalyst. In addition to the advantages from the economic point of view, recovery and reuse of the catalyst is equally important in order to avoid wastes, so improving the greenness of the process. There is a current tendency to transform homogeneous into heterogeneous catalysis, that will even be accelerated in the near future. Starting from a successful homogeneous catalyst, one general methodology allowing its recovery and reuse is to immobilize a suitable derivative of the active catalyst on an insoluble solid support. When the catalyst does not deactivate and is sufficiently stable under the reaction conditions, the ultimate immobilization methodology is to attach covalently the catalytically active species to the support. In this contribution, after introducing some general principles describing the fundamentals of the covalent anchoring, the emphasis is placed more on giving an overview of the most important types of covalently anchored catalysts, including Brönsted and Lewis acids, covalently anchored bases and hydrogenation complexes. Hot topics such as silica‐bound organocatalysts and the application of periodic mesoporous organosilicas as heterogeneous catalysts is also covered.
Advanced Synthesis & Catalysis – Wiley
Published: Aug 1, 2006
Keywords: ; ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.