Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Harada, M. Adachi (2000)
Surfactant‐Mediated Fabrication of Silica NanotubesAdvanced Materials, 12
G. Mor, M. Carvalho, O. Varghese, M. Pishko, C. Grimes (2004)
A room-temperature TiO_2-nanotube hydrogen sensor able to self-clean photoactively from environmental contaminationJournal of Materials Research, 19
Hyun Lee, H. Kim, S. Chung, K. Lee, Hee-Cheon Lee, J. Lee (2003)
Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents.Journal of the American Chemical Society, 125 10
S. Yoo, S. Akbar, K. Sandhage (2004)
Nanocarving of Bulk Titania Crystals into Oriented Arrays of Single‐Crystal Nanofibers via Reaction with Hydrogen‐Bearing GasAdvanced Materials, 16
R. Asahi, T. Morikawa, T. Ohwaki, Koyu Aoki, Y. Taga (2001)
Visible-Light Photocatalysis in Nitrogen-Doped Titanium OxidesScience, 293
C. Melendres, A. Narayanasamy, V. Maroni, R. Siegel (1989)
Raman spectroscopy of nanophase TiO_2Journal of Materials Research, 4
S. Iijima (1991)
Helical microtubules of graphitic carbonNature, 354
Y. Chen, Chi-young Lee, M. Yeng, H. Chiu (2003)
Preparing titanium oxide with various morphologiesMaterials Chemistry and Physics, 81
N. Saha, H. Tompkins (1992)
Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy studyJournal of Applied Physics, 72
A. Morales, Charles Lieber (1998)
A laser ablation method for the synthesis of crystalline semiconductor nanowiresScience, 279 5348
M. Niederberger, H. Muhr, F. Krumeich, Fabian Bieri, Andrzej Günther, R. Nesper (2000)
Low-Cost Synthesis of Vanadium Oxide Nanotubes via Two Novel Non-Alkoxide RoutesChemistry of Materials, 12
G. Du, Qing Chen, R. Che, Z. Yuan, Lianmao Peng (2001)
Preparation and structure analysis of titanium oxide nanotubesApplied Physics Letters, 79
CNR Rao, BC Satishkumar, A Govindaraj (1997)
Zirconia nanotubes.Chem. Commun., 16
Yingchun Zhu, Hongliang Li, Y. Koltypin, Y. Hacohen, A. Gedanken (2001)
Sonochemical synthesis of titania whiskers andnanotubesChemical Communications
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
K. Lee, W. Seo, Joon-Taik Park (2003)
Synthesis and optical properties of colloidal tungsten oxide nanorods.Journal of the American Chemical Society, 125 12
S. Matsuda, A. Kato (1983)
Titanium oxide based catalysts - a reviewApplied Catalysis, 8
S. Sing, R. Everett, L. Haul, Netherlands Moscou, R. Pierotti, J. Rouquerol, France, T. Siemieniewska
International Union of Pure and Applied Chemistry Physical Chemistry Division Commission on Colloid and Surface Chemistry including Catalysis* Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity Reporting Physisorption Data for
Tomoko Kasuga, M. Hiramatsu, Akihiko Hoson, Toru Sekino, K. Niihara (1998)
Formation of titanium oxide nanotubeLangmuir, 14
A. Fujishima, K. Honda (1972)
Electrochemical Photolysis of Water at a Semiconductor ElectrodeNature, 238
KSW Sing, DH Evertt, RAW Haul, L Moscou, RA Pierotti, J Rouquerol, T Siemieniewska (1985)
Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl. Chem., 57
J. Gole, J. Stout, C. Burda, Y. Lou, Xiaobo Chen (2004)
Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the NanoscaleJournal of Physical Chemistry B, 108
Hiromasa Tokudome, M. Miyauchi (2004)
N-doped TiO2 Nanotube with Visible Light ActivityChemistry Letters, 33
M. Remškar, A. Mrzel, Zora Škraba, A. Jesih, M. Čeh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic (2001)
Self-Assembly of Subnanometer-Diameter Single-Wall MoS2 NanotubesScience, 292
M. Nath, C. Rao (2001)
New metal disulfide nanotubes.Journal of the American Chemical Society, 123 20
P. Hoyer (1996)
Formation of a Titanium Dioxide Nanotube ArrayLangmuir, 12
Z. Yuan, Wuzong Zhou, B. Su (2002)
Hierarchical interlinked structure of titanium oxide nanofibers.Chemical communications, 11
J. Jung, Hideki Kobayashi, K. Bommel, S. Shinkai, T. Shimizu (2002)
Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel TemplateChemistry of Materials, 14
G. Ramis, G. Busca, V. Lorenzelli, P. Forzatti (1990)
Fourier transform infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on TiO2 anataseApplied Catalysis, 64
Huaiyong Zhu, Xueping Gao, Y. Lan, D. Song, Ying Xi, Jin-cai Zhao (2004)
Hydrogen titanate nanofibers covered with anatase nanocrystals: a delicate structure achieved by the wet chemistry reaction of the titanate nanofibers.Journal of the American Chemical Society, 126 27
Rhee Houn, Bae Won, L. Sung (2005)
Template-free Hydrothermal Synthesis of High Surface Area Nitrogen-doped Titania Photocatalyst Active under Visible LightChemistry Letters, 34
Qing Chen, G. Du, Shufeng Zhang, Lianwei Peng, Lianmao Peng (2002)
The structure of trititanate nanotubes.Acta crystallographica. Section B, Structural science, 58 Pt 4
M. and, M. Jaroniec, A. Sayari (1997)
Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurementsLangmuir, 13
S. Brunauer, P. Emmett, E. Teller (1938)
ADSORPTION OF GASES IN MULTIMOLECULAR LAYERSJournal of the American Chemical Society, 60
Tomoko Kasuga, M. Hiramatsu, Akihiko Hoson, T. Sekino, K. Niihara (1999)
Titania Nanotubes Prepared by Chemical ProcessingAdvanced Materials, 11
H. Kim, Hyun-Yong Lee, Chang Rhee, S. Chung, Hee-Cheon Lee, K. Lee, J. Lee (2003)
Alumina nanotubes containing lithium of high ion mobility.Journal of the American Chemical Society, 125 44
D. Seo, J. Lee, Hwan Kim (2001)
Preparation of nanotube-shaped TiO2 powderJournal of Crystal Growth, 229
M. Niederberger, F. Krumeich, H. Muhr, M. Müller, R. Nesper (2001)
Synthesis and characterization of novel nanoscopic molybdenum oxide fibersJournal of Materials Chemistry, 11
C. Burda, Y. Lou, Xiaobo Chen, A. Samia, J. Stout, J. Gole (2003)
Enhanced Nitrogen Doping in TiO2 NanoparticlesNano Letters, 3
Nitrogen-doped titanium oxides nanostructures were synthesized by a new method proposed here from titanium oxysulfate precursor in a NH4OH solution under hydrothermal conditions without any extra templates as structure driving agents. The material synthesized with NH4OH was an ammonium titanate and showed curled nanosheets, nanofibers or nanorods morphologies depending on the molar ratio of NH4OH to titanium precursor and the hydrothermal temperature. The nanofibrous titanates had a high surface area over 500 m2 g−1 and a pore volume of 0.72 cm3 g−1. The calcination of as-synthesized material at 673 K produced a titanium oxynitride TiO2−xNx with anatase phase, which absorbed visible light. Ion exchange of ammonium ion of the titanate with sodium Na2Ti3O7−xNx enhanced the thermal stability of the titanate phase.
Journal of Materials Research – Springer Journals
Published: Nov 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.