Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Milenkovic, O. Chambers, M. Music, J. Tasic (2015)
Automated breast-region segmentation in the axial breast MR imagesComputers in biology and medicine, 62
Lei Wang, B. Platel, Tetyana Ivanovska, M. Harz, H. Hahn (2012)
Fully automatic breast segmentation in 3D breast MRI2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
M. Dalmis, A. Gubern-Mérida, C. Borelli, S. Vreemann, R. Mann, N. Karssemeijer (2016)
A fully automated system for quantification of background parenchymal enhancement in breast DCE-MRI, 9785
O. Ronneberger, P. Fischer, T. Brox (2015)
U-Net: Convolutional Networks for Biomedical Image SegmentationArXiv, abs/1505.04597
Xavier Glorot, Yoshua Bengio (2010)
Understanding the difficulty of training deep feedforward neural networks
V Giannini, A Vignati, L Morra (2010)
2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
M. Koenig, H. Laue, T. Böhler, H. Peitgen (2007)
Automatic segmentation of relevant structures in DCE MR mammograms, 6514
C. Ortíz, Anne Martel (2012)
Automatic atlas-based segmentation of the breast in MRI for 3D breast volume computation.Medical physics, 39 10
J. Steiger (1980)
Tests for comparing elements of a correlation matrix.Psychological Bulletin, 87
C. Greenwood, A. Paterson, L. Linton, I. Andrulis, C. Apicella, A. Dimitromanolakis, V. Kriukov, L. Martin, A. Salleh, E. Samiltchuk, R. Parekh, M. Southey, E. John, J. Hopper, N. Boyd, J. Rommens (2011)
A genome-wide linkage study of mammographic density, a risk factor for breast cancerBreast Cancer Research : BCR, 13
Jianhua Yao, Jeremy Chen, C. Chow (2009)
Breast Tumor Analysis in Dynamic Contrast Enhanced MRI Using Texture Features and Wavelet TransformIEEE Journal of Selected Topics in Signal Processing, 3
A. Gubern-Mérida, Michiel Kallenberg, B. Platel, R. Mann, R. Martí, N. Karssemeijer (2014)
Volumetric Breast Density Estimation from Full-Field Digital Mammograms: A Validation StudyPLoS ONE, 9
A. Gubern-Mérida, Michiel Kallenberg, R. Martí, N. Karssemeijer (2012)
Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based ApproachesMedical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention, 15 Pt 2
Muqing Lin, J. Chen, Xiaoyong Wang, Siwa Chan, Siping Chen, M. Su (2013)
Template-based automatic breast segmentation on MRI by excluding the chest region.Medical physics, 40 12
J. Bergstra, Yoshua Bengio (2012)
Random Search for Hyper-Parameter OptimizationJ. Mach. Learn. Res., 13
K. Zou, S. Warfield, A. Bharatha, C. Tempany, M. Kaus, S. Haker, W. Wells, F. Jolesz, R. Kikinis (2004)
Statistical validation of image segmentation quality based on a spatial overlap index.Academic radiology, 11 2
Calculation for the test of the difference between two dependent correlations with one variable in common
Shandong Wu, S. Weinstein, E. Conant, D. Kontos (2013)
Automated fibroglandular tissue segmentation and volumetric density estimation in breast MRI using an atlas-aided fuzzy C-means method.Medical physics, 40 12
J. Harvey, R. Hendrick, J. Coll, Brandi Nicholson, B. Burkholder, M. Cohen (2007)
Breast MR imaging artifacts: how to recognize and fix them.Radiographics : a review publication of the Radiological Society of North America, Inc, 27 Suppl 1
Marie-Pierre Dubuisson, Anil Jain (1994)
A modified Hausdorff distance for object matchingProceedings of 12th International Conference on Pattern Recognition, 1
A. Gubern-Mérida, R. Martí, J. Melendez, Jakob Hauth, R. Mann, N. Karssemeijer, B. Platel (2015)
Automated localization of breast cancer in DCE-MRIMedical image analysis, 20 1
KH Zou, SK Warfield, A Bharatha (2004)
Statistical validation of image segmentation quality based on a spatial overlap index 1: Scientific reports, 11
N. Boyd, L. Martin, M. Yaffe, S. Minkin (2011)
Mammographic density and breast cancer risk: current understanding and future prospectsBreast Cancer Research : BCR, 13
Marcin Andrychowicz, Misha Denil, Sergio Colmenarejo, Matthew Hoffman, David Pfau, T. Schaul, Nando Freitas (2016)
Learning to learn by gradient descent by gradient descent
A. Gubern-Mérida, Michiel Kallenberg, R. Mann, R. Martí, N. Karssemeijer (2015)
Breast Segmentation and Density Estimation in Breast MRI: A Fully Automatic FrameworkIEEE Journal of Biomedical and Health Informatics, 19
AL Martel, C Gallego‐Ortiz, Y Lu (2016)
SPIE Medical Imaging
RMSprop gradient optimization
Yann LeCun, Yoshua Bengio, Geoffrey Hinton (2015)
Deep LearningNature, 521
F. Khalvati, C. Gallego-Ortiz, S. Balasingham, Anne Martel (2015)
Automated Segmentation of Breast in 3-D MR Images Using a Robust AtlasIEEE Transactions on Medical Imaging, 34
M Koenig, H Laue, T Boehler, H‐O Peitgen (2007)
Medical Imaging
K. Nie, J. Chen, Siwa Chan, Man-Kwun Chau, Hon Yu, S. Bahri, Tiffany Tseng, O. Nalcioglu, M. Su (2008)
Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI.Medical physics, 35 12
O Ronneberger, P Fischer, T Brox (2015)
International Conference on Medical Image Computing and Computer‐Assisted Intervention
M. Razavi, Lei Wang, A. Gubern-Mérida, Tetyana Ivanovska, H. Laue, N. Karssemeijer, H. Hahn (2015)
Towards Accurate Segmentation of Fibroglandular Tissue in Breast MRI Using Fuzzy C-Means and Skin-Folds Removal
V. Giannini, A. Vignati, L. Morra, D. Persano, D. Brizzi, L. Carbonaro, A. Bert, F. Sardanelli, D. Regge (2010)
A fully automatic algorithm for segmentation of the breasts in DCE-MR images2010 Annual International Conference of the IEEE Engineering in Medicine and Biology
H. Baltzer, Olivier Alonzo-Proulx, J. Mainprize, M. Yaffe, K. Metcalfe, S. Narod, E. Warner, J. Semple (2014)
MRI Volumetric Analysis of Breast Fibroglandular Tissue to Assess Risk of the Spared Nipple in BRCA1 and BRCA2 Mutation CarriersAnnals of Surgical Oncology, 21
M Razavi, L Wang, A Gubern‐MTrida (2015)
International Conference on Image Analysis and Processing
V. McCormack, I. Silva (2006)
Breast Density and Parenchymal Patterns as Markers of Breast Cancer Risk: A Meta-analysisCancer Epidemiology Biomarkers & Prevention, 15
N. Tustison, B. Avants, P. Cook, Yuanjie Zheng, Alexander Egan, Paul Yushkevich, J. Gee (2010)
N4ITK: Improved N3 Bias CorrectionIEEE Transactions on Medical Imaging, 29
F. Gao, S. Tan, D. Machin, N. Wong (2007)
Confirmation of double-peaked time distribution of mortality among Asian breast cancer patients in a population-based studyBreast Cancer Research, 9
S. Behrens, H. Laue, M. Althaus, T. Böhler, B. Kuemmerlen, H. Hahn, H. Peitgen (2007)
Computer assistance for MR based diagnosis of breast cancer: Present and future challengesComputerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 31 4-5
Aaron Klein, S. Falkner, Simon Bartels, Philipp Hennig, F. Hutter (2016)
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large DatasetsArXiv, abs/1605.07079
Anne Martel, C. Gallego-Ortiz, Yingli Lu (2016)
Breast segmentation in MRI using Poisson surface reconstruction initialized with random forest edge detection, 9784
T. Ivanovska, R. Laqua, Lei Wang, V. Liebscher, H. Völzke, K. Hegenscheid (2014)
A Level Set Based Framework for Quantitative Evaluation of Breast Tissue Density from MRI DataPLoS ONE, 9
L Wang, B Platel, T Ivanovskaya, M Harz, HK Hahn (2012)
2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
C. Vachon, C. Gils, T. Sellers, K. Ghosh, S. Pruthi, KathleenR. Brandt, V. Pankratz (2007)
Mammographic density, breast cancer risk and risk predictionBreast Cancer Research : BCR, 9
Medical Physics – Wiley
Published: Feb 1, 2017
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.