Access the full text.
Sign up today, get DeepDyve free for 14 days.
Yong Zheng, Claire Manzotti, Michael Liu, F. Burke, Karen Mead, D. Sansom (2004)
CD86 and CD80 Differentially Modulate the Suppressive Function of Human Regulatory T Cells1The Journal of Immunology, 172
N. Inohara, Y. Ogura, A. Fontalba, O. Gutiérrez, F. Pons, J. Crespo, K. Fukase, S. Inamura, S. Kusumoto, M. Hashimoto, S. Foster, A. Moran, J. Fernández-Luna, G. Núñez (2003)
Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2The Journal of Biological Chemistry, 278
J. Wehkamp, M. Schmid, K. Fellermann, E. Stange (2005)
Defensin deficiency, intestinal microbes, and the clinical phenotypes of Crohn’s diseaseJournal of Leukocyte Biology, 77
N. Inohara, T. Koseki, Jingmei Lin, L. Peso, P. Lucas, Felicia Chen, Y. Ogura, G. Núñez (2000)
An Induced Proximity Model for NF-κB Activation in the Nod1/RICK and RIP Signaling PathwaysJournal of Biological Chemistry, 275
M. Kapsenberg (2003)
Dendritic-cell control of pathogen-driven T-cell polarizationNature Reviews Immunology, 3
Anne-Laure Pauleau, P. Murray (2003)
Role of Nod2 in the Response of Macrophages to Toll-Like Receptor AgonistsMolecular and Cellular Biology, 23
M. Chamaillard, P. Desreumaux (2004)
NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha defensin expression, J. Wehkamp, J. Harder, M. Weichenthal, M. Schwab, E. Schaeffeler, S. Schlee, in: Gut, 53. (2004), 1658Gastroenterologie Clinique Et Biologique, 28
G. Bouma, W. Strober (2003)
The immunological and genetic basis of inflammatory bowel diseaseNature Reviews Immunology, 3
Tomohiro Watanabe, A. Kitani, P. Murray, W. Strober (2004)
NOD2 is a negative regulator of Toll-like receptor 2–mediated T helper type 1 responsesNature Immunology, 5
M. Netea, B. Kullberg, D. Jong, B. Franke, T. Sprong, T. Naber, J. Drenth, J. Meer (2004)
NOD2 mediates anti‐inflammatory signals induced by TLR2 ligands: implications for Crohn's diseaseEuropean Journal of Immunology, 34
D. Artis, N. Humphreys, A. Bancroft, N. Rothwell, C. Potten, R. Grencis (1999)
Tumor Necrosis Factor α Is a Critical Component of Interleukin 13–Mediated Protective T Helper Cell Type 2 Responses during Helminth InfectionThe Journal of Experimental Medicine, 190
R. Summers, D. Elliott, Jacqueline Urban, R. Thompson, J. Weinstock (2004)
Vomiting in the recently anticoagulated patientGut, 54
Derek Abbott, A. Wilkins, J. Asara, L. Cantley (2004)
The Crohn's Disease Protein, NOD2, Requires RIP2 in Order to Induce Ubiquitinylation of a Novel Site on NEMOCurrent Biology, 14
Y. Ogura, D. Bonen, N. Inohara, D. Nicolae, Felicia Chen, Richard Ramos, Heidi Britton, Thomas Moran, Reda Karaliuskas, R. Duerr, J. Achkar, S. Brant, T. Bayless, B. Kirschner, S. Hanauer, G. Núñez, Judy Cho (2001)
A frameshift mutation in NOD2 associated with susceptibility to Crohn's diseaseNature, 411
Wehkamp (2004)
NOD2 (CARD15) mutations in Crohn's disease are associated with diminished mucosal alpha-defensin expressionGut, 53
D. Heel, Subrata Ghosh, M. Butler, K. Hunt, Anna Lundberg, Tariq Ahmad, D. McGovern, Clive Onnie, K. Negoro, S. Goldthorpe, B. Foxwell, C. Mathew, A. Forbes, D. Jewell, R. Playford (2005)
Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's diseaseThe Lancet, 365
M. Fortini (2002)
Signalling: γ-Secretase-mediated proteolysis in cell-surface-receptor signallingNature Reviews Molecular Cell Biology, 3
A. Chin, P. Dempsey, K. Bruhn, Jeff Miller, Yang Xu, G. Cheng (2002)
Involvement of receptor-interacting protein 2 in innate and adaptive immune responsesNature, 416
M. Netea, G. Ferwerda, D. Jong, T. Jansen, L. Jacobs, Matthijs Kramer, T. Naber, J. Drenth, S. Girardin, Bart Kullberg, G. Adema, J. Meer (2005)
Nucleotide-Binding Oligomerization Domain-2 Modulates Specific TLR Pathways for the Induction of Cytokine Release 1The Journal of Immunology, 174
Koichi Kobayashi, M. Chamaillard, Y. Ogura, O. Henegariu, N. Inohara, G. Núñez, R. Flavell (2005)
Nod2-Dependent Regulation of Innate and Adaptive Immunity in the Intestinal TractScience, 307
L. Eckmann, M. Karin (2005)
NOD2 and Crohn's disease: loss or gain of function?Immunity, 22 6
G. Napolitani, A. Rinaldi, F. Bertoni, F. Sallusto, A. Lanzavecchia (2005)
Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1–polarizing program in dendritic cellsNature Immunology, 6
N. Inohara, T. Koseki, J. Lin, L. Peso, P. Lucas, F. Chen, Y. Ogura, G. Núñez (2000)
An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways.The Journal of biological chemistry, 275 36
M. Rimoldi, M. Chieppa, M. Vulcano, P. Allavena, M. Rescigno (2004)
Intestinal Epithelial Cells Control Dendritic Cell FunctionAnnals of the New York Academy of Sciences, 1029
V. Soumelis, P. Reche, H. Kanzler, W. Yuan, G. Edward, B. Homey, M. Gilliet, S. Ho, S. Antonenko, A. Lauerma, Kathleen Smith, D. Gorman, S. Zurawski, J. Abrams, S. Menon, T. Mcclanahan, R. Waal-Malefyt, F. Bazan, R. Kastelein, Yong‐jun Liu (2002)
Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLPNature Immunology, 3
R. Takakura, T. Kiyohara, Y. Murayama, Y. Miyazaki, Y. Miyoshi, Y. Shinomura, Y. Matsuzawa (2002)
Enhanced macrophage responsiveness to lipopolysaccharide and CD40 stimulation in a murine model of inflammatory bowel disease: IL-10-deficient miceInflammation Research, 51
Naoko Sawada-Hase, T. Kiyohara, J. Miyagawa, H. Ueyama, H. Nishibayashi, Y. Murayama, T. Kashihara, M. Nakahara, Y. Miyazaki, S. Kanayama, R. Nezu, Y. Shinomura, Y. Matsuzawa (2000)
An increased number of CD40-high monocytes in patients with Crohn's diseaseAmerican Journal of Gastroenterology, 95
M. Heinzelmann, H. Polk, A. Chernobelsky, T. Stites, L. Gordon (2000)
Endotoxin and muramyl dipeptide modulate surface receptor expression on human mononuclear cells.Immunopharmacology, 48 2
R. Baldassano, Stefan Schreiber, Richard Johnston, Robert Fu, Toshio Muraki, R. Macdermott (1993)
Crohn's disease monocytes are primed for accentuated release of toxic oxygen metabolites.Gastroenterology, 105 1
D. Heel, S. Ghosh, K. Hunt, C. Mathew, Alastair Forbes, D. Jewell, R. Playford (2005)
Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn’s diseaseGut, 54
Jörg Fritz, S. Girardin, C. Fitting, C. Werts, D. Mengin-Lecreulx, M. Caroff, J. Cavaillon, D. Philpott, M. Adib-conquy (2005)
Synergistic stimulation of human monocytes and dendritic cells by Toll‐like receptor 4 and NOD1‐ and NOD2‐activating agonistsEuropean Journal of Immunology, 35
Matthijs Kramer, M. Netea, D. Jong, B. Kullberg, G. Adema (2006)
Impaired dendritic cell function in Crohn’s disease patients with NOD2 3020insC mutationJournal of Leukocyte Biology, 79
D. Philpott, J. Viala (2004)
Towards an understanding of the role of NOD2/CARD15 in the pathogenesis of Crohn's disease.Best practice & research. Clinical gastroenterology, 18 3
Z. Liu, N. Hiwatashi, M. Noguchi, T. Toyota (1997)
Increased expression of costimulatory molecules on peripheral blood monocytes in patients with Crohn's disease.Scandinavian journal of gastroenterology, 32 12
D. Sansom, Claire Manzotti, Yong Zheng (2003)
What's the difference between CD80 and CD86?Trends in immunology, 24 6
A. Hart, H. Al-Hassi, R. Rigby, S. Bell, A. Emmanuel, S. Knight, M. Kamm, A. Stagg (2005)
Characteristics of intestinal dendritic cells in inflammatory bowel diseases.Gastroenterology, 129 1
J. Hugot, M. Chamaillard, H. Zouali, S. Lesage, J. Cézard, J. Belaiche, S. Almér, C. Tysk, C. O'Morain, M. Gassull, V. Binder, Y. Finkel, A. Cortot, R. Modigliani, P. Laurent-Puig, C. Gower-Rousseau, J. Macry, J. Colombel, M. Sahbatou, G. Thomas (2001)
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's diseaseNature, 411
O. Grip, S. Janciauskiene, S. Lindgren (2004)
Circulating Monocytes and Plasma Inflammatory Biomarkers in Active Crohn's Disease: Elevated Oxidized Low-density Lipoprotein and the Anti-inflammatory Effect of AtorvastatinInflammatory Bowel Diseases, 10
E. Jong, H. Smits, M. Kapsenberg (2004)
Dendritic cell-mediated T cell polarizationSpringer Seminars in Immunopathology, 26
AbstractSensing of commensal microorganisms via Toll-like receptors (TLR) in the gut is essential for maintaining intestinal homeostasis in healthy individuals. Conversely, Crohn's disease is characterised by an inappropriate T helper-type 1 (Th1)-mediated immune response towards these same microorganisms. NOD2 is expressed by dendritic cells (DC) and mediates responses to bacterial muramyl-dipeptides (MDP). Mutations in NOD2 (CARD15) have recently been associated with susceptibility to Crohn's disease although the underlying mechanisms have yet to be established. We investigated the functional outcome of NOD2 and TLR4-mediated activation in monocyte-derived DC from wild-type NOD2 healthy controls and NOD2 frame-shift mutation-carrying Crohn's disease patients. In wild-type DC, MDP acted synergistically with LPS to amplify inflammatory cytokine production, enhance co-stimulatory molecule expression, and produce DC that promoted the proliferation of naïve, allogeneic, CD4+ T lymphocytes with a Th2-like cytokine profile. By contrast, DC carrying homozygous NOD2 mutations were unable to react to MDP, responded to LPS only, and promoted the development of Th1 cells. These results suggest activation of the NOD2 pathway in DC modulates their response to TLR agonists and regulates their ability to induce polarised Th1 responses. As a consequence, Crohn's disease patients with defective NOD2 may be predisposed to the generation of strongly polarised Th1 responses against common commensal microorganisms.
Journal of Crohn's and Colitis – Oxford University Press
Published: Dec 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.