Access the full text.
Sign up today, get DeepDyve free for 14 days.
Francisco Pereira, Tom Mitchell, M. Botvinick (2009)
Machine learning classifiers and fMRI: A tutorial overviewNeuroImage, 45
Jacob Cohen (1994)
The earth is round (p < .05)American Psychologist, 49
N. Salkind (2006)
Encyclopedia of Measurement and Statistics
Ferath Kherif, J. Poline, S. Mériaux, H. Benali, G. Flandin, M. Brett (2003)
Group analysis in functional neuroimaging: selecting subjects using similarity measuresNeuroImage, 20
Rebecca Schwarzlose, C. Baker, N. Kanwisher (2010)
Separate face and body selectivity on the fusiform gyrus.The Journal of neuroscience : the official journal of the Society for Neuroscience, 25 47
Franck Ramus (2006)
Faculty Opinions recommendation of High-resolution imaging reveals highly selective nonface clusters in the fusiform face area.
J. Haynes, G. Rees (2006)
Neuroimaging: Decoding mental states from brain activity in humansNature Reviews Neuroscience, 7
S. Edelman, K. Grill-Spector, T. Kushnir, R. Malach (1998)
Toward direct visualization of the internal shape representation space by fMRIPsychobiology
(2006)
Mathématiques pour les sciences cognitives. Grenoble: Presses Universitaires de Grenoble (PUG) (357p.) Collection: Sciences et techniques de la connaissance
J. Haynes, G. Rees (2005)
Predicting the Stream of Consciousness from Activity in Human Visual CortexCurrent Biology, 15
S. Hanson, Toshihiko Matsuka, J. Haxby (2004)
Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area?NeuroImage, 23
P. Hart, R. Duda, D. Stork (1973)
Pattern Classification
N. Azari, K. Pettigrew, M. Schapiro, J. Haxby, C. Grady, P. Pietrini, J. Salerno, L. Heston, S. Rapoport, B. Horwitz (1993)
Early Detection of Alzheimer's Disease: A Statistical Approach Using Positron Emission Tomographic DataJournal of Cerebral Blood Flow & Metabolism, 13
T. Cox, M. Cox (2000)
Metric multidimensional scaling
(2003)
Multivariate analysisEds): Encyclopedia for research methods for the social sciences
M. Mckeown, S. Makeig, Greg Brown, Tzyy-Ping Jung, S. Kindermann, A. Bell, T. Sejnowski (1998)
Analysis of fMRI data by blind separation into independent spatial componentsHuman Brain Mapping, 6
T. Carlson, Paul Schrater, Sheng He (2003)
Patterns of Activity in the Categorical Representations of ObjectsJournal of Cognitive Neuroscience, 15
(2007)
An Introduction to the Bootstrap
S. LaConte, Jon Anderson, S. Muley, J. Ashe, S. Frutiger, K. Rehm, L. Hansen, E. Yacoub, Xiaoping Hu, D. Rottenberg, S. Strother (2003)
The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance MetricsNeuroImage, 18
Karl Friston (1998)
Modes or models: a critique on independent component analysis for fMRITrends in Cognitive Sciences, 2
S. Strother, Jon Anderson, L. Hansen, U. Kjems, R. Kustra, J. Sidtis, S. Frutiger, S. Muley, S. LaConte, D. Rottenberg (2000)
The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis FrameworkNeuroImage, 15
J. Haynes, G. Rees (2005)
Predicting the orientation of invisible stimuli from activity in human primary visual cortexNature Neuroscience, 8
S. Shinkareva, H. Ombao, B. Sutton, Aprajita Mohanty, G. Miller (2006)
Classification of functional brain images with a spatio-temporal dissimilarity mapNeuroImage, 33
M. Spiridon, N. Kanwisher (2002)
How Distributed Is Visual Category Information in Human Occipito-Temporal Cortex? An fMRI StudyNeuron, 35
N. Lobaugh, R. West, A. Mcintosh (2001)
Spatiotemporal analysis of experimental differences in event-related potential data with partial least squares.Psychophysiology, 38 3
H. Barlow (1972)
Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology?Perception, 1
A. Mcintosh, F. Bookstein, J. Haxby, C. Grady, C. Grady (1996)
Spatial Pattern Analysis of Functional Brain Images Using Partial Least SquaresNeuroImage, 3
M. Young, S. Yamane (1992)
Sparse population coding of faces in the inferotemporal cortex.Science, 256 5061
C. Davatzikos, K. Ruparel, Yong Fan, D. Shen, M. Acharyya, J. Loughead, R. Gur, D. Langleben (2005)
Classifying spatial patterns of brain activity with machine learning methods: Application to lie detectionNeuroImage, 28
Campbell Clark, W. Ammann, W. Martin, P. Ty, Michael Hayden (1991)
The FDG/PET Methodology for Early Detection of Disease Onset: A Statistical ModelJournal of Cerebral Blood Flow & Metabolism, 11
W. Uttal (2001)
The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain
R. Poldrack (2008)
The role of fMRI in Cognitive Neuroscience: where do we stand?Current Opinion in Neurobiology, 18
Russell Epstein, N. Kanwisher (1998)
A cortical representation of the local visual environmentNature, 392
D. Ruppert (2004)
The Elements of Statistical Learning: Data Mining, Inference, and PredictionJournal of the American Statistical Association, 99
(1995)
Linear models of orthogonal subspaces and networks from functional activation PET studies of the human brain
H. Abdi, A. O’Toole, D. Valentin, Betty Edelman (2005)
DISTATIS: The Analysis of Multiple Distance Matrices2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops
K. Norman, Sean Polyn, Greg Detre, J. Haxby (2006)
Beyond mind-reading: multi-voxel pattern analysis of fMRI dataTrends in Cognitive Sciences, 10
L. Pessoa, S. Padmala (2005)
Quantitative prediction of perceptual decisions during near-threshold fear detection.Proceedings of the National Academy of Sciences of the United States of America, 102 15
J. Haxby, M. Gobbini, M. Furey, A. Ishai, J. Schouten, P. Pietrini (2001)
Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal CortexScience, 293
N. Kanwisher, J. McDermott, M. Chun (1997)
The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face PerceptionThe Journal of Neuroscience, 17
Tom Mitchell, R. Hutchinson, R. Niculescu, Francisco Pereira, Xuerui Wang, M. Just, Sharlene Newman (2004)
Learning to Decode Cognitive States from Brain ImagesMachine Learning, 57
A. Mcintosh, N. Lobaugh (2004)
Partial least squares analysis of neuroimaging data: applications and advancesNeuroImage, 23
Yann LeCun, Yoshua Bengio (1995)
Pattern Recognition and Neural Networks
J. Obleser, Frank Eisner (2009)
Pre-lexical abstraction of speech in the auditory cortexTrends in Cognitive Sciences, 13
Michael Hanke, Y. Halchenko, P. Sederberg, S. Hanson, J. Haxby, S. Pollmann (2009)
PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI DataNeuroinformatics, 7
K. Petersson, Thomas Nichols, J Poline, A. Holmes (1999)
Statistical limitations in functional neuroimaging. II. Signal detection and statistical inference.Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 354 1387
W. Newsome, W. Newsome, K. Britten, K. Britten, J. Movshon (1989)
Neuronal correlates of a perceptual decisionNature, 341
A. O’Toole, Fang Jiang, H. Abdi, J. Haxby (2005)
Partially Distributed Representations of Objects and Faces in Ventral Temporal CortexJournal of Cognitive Neuroscience, 17
P. Anderson (1972)
More is different.Science, 177 4047
Radford Neal (2006)
Pattern Recognition and Machine LearningPattern Recognition and Machine Learning
J. Miranda, A. Bokde, C. Born, H. Hampel, M. Stetter (2005)
Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI dataNeuroImage, 28
Y. Kamitani, F. Tong (2005)
Decoding the visual and subjective contents of the human brainNature Neuroscience, 8
A. Ishai, Leslie Ungerleider, A. Martin, J. Schouten, J. Haxby (1999)
Distributed representation of objects in the human ventral visual pathway.Proceedings of the National Academy of Sciences of the United States of America, 96 16
C. Carter, S. Heckers, T. Nichols, D. Pine, S. Strother (2008)
Optimizing the Design and Analysis of Clinical Functional Magnetic Resonance Imaging Research StudiesBiological Psychiatry, 64
David Cox, R. Savoy (2003)
Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortexNeuroImage, 19
M. Peelen, Alison Wiggett, P. Downing (2006)
Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological MotionNeuron, 49
(1995)
Pattern-based classification in functional neuroimaging
Rebecca Schwarzlose, C. Baker, N. Kanwisher (2005)
Separate Face and Body Selectivity on the Fusiform GyrusThe Journal of Neuroscience, 25
I. Gauthier, M. Tarr, A. Anderson, P. Skudlarski, J. Gore (1999)
Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objectsNature Neuroscience, 2
J. Kippenhan, W. Barker, S. Pascal, J. Nagel, R. Duara (1992)
Evaluation of a neural-network classifier for PET scans of normal and Alzheimer's disease subjects.Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 33 8
James Moeller, James Moeller, Stephen Strother, Stephen Strother (1991)
A Regional Covariance Approach to the Analysis of Functional Patterns in Positron Emission Tomographic DataJournal of Cerebral Blood Flow & Metabolism, 11
The goal of pattern-based classification of functional neuroimaging data is to link individual brain activation patterns to the experimental conditions experienced during the scans. These “brain-reading” analyses advance functional neuroimaging on three fronts. From a technical standpoint, pattern-based classifiers overcome fatal f laws in the status quo inferential and exploratory multivariate approaches by combining pattern-based analyses with a direct link to experimental variables. In theoretical terms, the results that emerge from pattern-based classifiers can offer insight into the nature of neural representations. This shifts the emphasis in functional neuroimaging studies away from localizing brain activity toward understanding how patterns of brain activity encode information. From a practical point of view, pattern-based classifiers are already well established and understood in many areas of cognitive science. These tools are familiar to many researchers and provide a quantitatively sound and qualitatively satisfying answer to most questions addressed in functional neuroimaging studies. Here, we examine the theoretical, statistical, and practical underpinnings of pattern-based classification approaches to functional neuroimaging analyses. Pattern-based classification analyses are well positioned to become the standard approach to analyzing functional neuroimaging data.
Journal of Cognitive Neuroscience – MIT Press
Published: Nov 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.