Access the full text.
Sign up today, get DeepDyve free for 14 days.
Chen (2022)
10.1016/j.polymdegradstab.2022.110168Polym. Degrad. Stabil., 206
Ju (2021)
10.1039/D1CP02038BPhys. Chem. Chem. Phys., 23
Xin (2021)
10.1016/j.jenvman.2021.113267J. Environ. Manage., 296
Fritz-Langhals (2022)
10.1021/acs.oprd.2c00248Org. Process Res. Dev., 26
Wen (2020)
10.1002/app.48338J. Appl. Polym. Sci., 137
Kim (2021)
10.1021/acscatal.0c04014ACS Catal., 11
Tournier (2020)
10.1038/s41586-020-2149-4Nature, 580
Sanchez (2011)
10.1016/j.eurpolymj.2011.07.013Eur. Polym. J., 47
Al-Sabagh (2016)
10.1039/C6GC00534AGreen Chem., 18
Jehanno (2021)
10.1002/anie.202014860Angew. Chem., Int. Ed., 60
Xu (2020)
10.1016/j.atmosenv.2020.117404Atmos. Environ., 226
Smith (2022)
10.1021/acssuschemeng.1c06845ACS Sustainable Chem. Eng., 10
Huck (2011)
10.1038/472425aNature, 472
Ellis (2021)
10.1038/s41929-021-00648-4Nat. Catal., 4
Fukushima (2013)
10.1039/C2PY20793APolym. Chem., 4
Lopez-Fonseca (2010)
10.1016/j.polymdegradstab.2010.03.007Polym. Degrad. Stabil., 95
Lu (2022)
10.1038/s41586-022-04599-zNature, 604
Marullo (2021)
10.1021/acssuschemeng.1c04060ACS Sustainable Chem. Eng., 9
Cho (2015)
10.3390/molecules200815108Molecules, 20
Chu (2022)
10.1021/acscatal.2c01286ACS Catal., 12
Sonnendecker (2022)
10.1002/cssc.202101062ChemSusChem, 15
Abedsoltan (2021)
10.1016/j.polymer.2021.123620Polymer, 222
Fan (2022)
10.1039/D1GC03885KGreen Chem., 24
Wang (2020)
10.1021/acssuschemeng.0c04108ACS Sustainable Chem. Eng., 8
Wang (2009)
10.1016/j.eurpolymj.2009.01.025Eur. Polym. J., 45
Chen (2023)
10.1039/D3CP01700APhys. Chem. Chem. Phys., 25
Becerril-Arreola (2021)
10.1038/s41598-021-82983-xSci. Rep., 11
Zhu (2022)
10.1016/j.apcata.2022.118681Appl. Catal., A, 641
Yue (2011)
10.1016/j.polymdegradstab.2010.12.020Polym. Degrad. Stabil., 96
Fukushima (2011)
10.1002/pola.24551J. Polym. Sci. Pol. Chem., 49
Wang (2015)
10.1021/sc5007522ACS Sustainable Chem. Eng., 3
Korley (2021)
10.1126/science.abg4503Science, 373
Basterretxea (2019)
10.1021/acssuschemeng.8b05609ACS Sustainable Chem. Eng., 7
Jang (2022)
10.1080/15583724.2022.2033765Polym. Rev., 62
Fehér (2022)
10.1039/D2GC02860CGreen Chem., 24
Kakadellis (2021)
10.1126/science.abj3476Science, 373
Jehanno (2018)
10.1039/C7GC03396FGreen Chem., 20
Reisinger (2021)
10.1002/anie.202102946Angew. Chem., Int. Ed., 60
Chen (2022)
10.1021/acssuschemeng.2c05722ACS Sustainable Chem. Eng., 10
Aguado (2023)
10.1007/s11696-023-02704-8Chem. Pap., 77
Wang (2012)
10.1039/c2gc35696aGreen Chem., 14
Ruiz-Cantu (2019)
10.1002/macp.201800459Macromol. Chem. Phys., 220
Burgess (2014)
10.1021/ma5000199Macromolecules, 47
Liu (2020)
10.1039/D0GC00327AGreen Chem., 22
Zhou (2021)
10.1038/s41467-021-25048-xNat. Commun., 12
Song (2022)
10.1016/j.gee.2020.10.002Green Energy Environ., 7
Demarteau (2020)
10.1039/D0PY00067APolym.Chem, 11
Zhou (2020)
10.1016/j.wasman.2020.03.041Waste Manage., 107
The structure–activity relationships of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) based protic ionic salts for polyethylene terephthalate (PET) glycolysis by ethylene glycol (EG) were comprehensively investigated through theoretical prediction and experimental verification. The proton capture ability of the anionic ligand from EG is positively correlated with the activity of the catalyst, as the generation of EG− was crucial for the chain breaking reaction via nucleophilic attack on the carbonyl group. Furthermore, density functional theory calculations demonstrated that the HTBD cation and anionic ligands work in a cooperative manner in the PET glycolysis reaction, where the ligands abstract a proton from EG to generate EG− and provide a proton to produce the bis(hydroxyalkyl)terephthalate (BHET) product. The rate-determining step is the nucleophilic attack step, where the Gibbs energy barriers (ΔG≠) increase in the order of 29.7 kcal mol−1 (HTBD-OAc) < 30.2 kcal mol−1 (HTBD-CH3CH2COO) < 31.4 kcal mol−1 (HTBD-HCOO) < 35.7 kcal mol−1 (HTBD-CH3COCOO) < 36.9 kcal mol−1 (HTBD-NO3). This is confirmed from the experimental results that the BHET yields decrease in the order of 84.8% (HTBD-OAc) > 82.4% (HTBD-CH3CH2COO) > 80.2% (HTBD-HCOO) > 73.6% (HTBD-CH3COCOO) > 4.7% (HTBD-NO3). These findings offer valuable guidance for designing more efficient metal-free protic ionic salts, promoting sustainable PET recycling.
Physical Chemistry Chemical Physics – Royal Society of Chemistry
Published: Oct 25, 2023
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.