Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Hartmann, P. Holliger, F. Laugier, G. Rolland, A. Suhm, T. Ernst, T. Billon, N. Vulliet (2005)
Growth of SiGe/Si superlattices on silicon-on-insulator substrates for multi-bridge channel field effect transistorsJournal of Crystal Growth, 283
M. Copel, R. Tromp (1991)
Are bare surfaces detrimental in epitaxial growthApplied Physics Letters, 58
R. Loo, H. Arimura, D. Cott, L. Witters, G. Pourtois, A. Schulze, B. Douhard, W. Vanherle, G. Eneman, O. Richard, P. Favia, J. Mitard, D. Mocuta, R. Langer, N. Collaert (2017)
(Invited) Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures, 80
Y. Fang, V. D’Costa, J. Tolle, C. Poweleit, J. Kouvetakis, J. Menéndez (2008)
Strained Si films grown by chemical vapor deposition of trisilane on Ge buffered Si(100)Thin Solid Films, 516
E. Rudkevich, Feng Liu, D. Savage, T. Kuech, L. Mccaughan, M. Lagally (1998)
Hydrogen induced Si surface segregation on Ge-covered Si(001)Physical Review Letters, 81
M. Liehr, C. Greenlief, M. Offenberg, S. Kasi (1990)
Equilibrium surface hydrogen coverage during silicon epitaxy using SiH4Journal of Vacuum Science and Technology, 8
R. Loo, A. Hikavyy, L. Witters, A. Schulze, H. Arimura, D. Cott, J. Mitard, C. Porret, H. Mertens, P. Ryan, J. Wall, K. Matney, M. Wormington, P. Favia, O. Richard, H. Bender, N. Horiguchi, N. Collaert, A. Thean (2016)
Invited) Processing Technologies for Advanced Ge Devices, 75
M. Caymax, F. Leys, J. Mitard, K. Martens, Lijun Yang, G. Pourtois, W. Vandervorst, M. Meuris, R. Loo (2009)
The Influence of the Epitaxial Growth Process Parameters on Layer Characteristics and Device Performance in Si-passivated Ge pMOSFETsECS Transactions
Y. Kuo, Y. Lee, Y. Ge, S. Ren, J. Roth, T. Kamins, D. Miller, J. Harris (2005)
Strong quantum-confined Stark effect in germanium quantum-well structures on siliconNature, 437
R. Loo, H. Arimura, D. Cott, L. Witters, G. Pourtois, A. Schulze, B. Douhard, W. Vanherle, G. Eneman, O. Richard, P. Favia, J. Mitard, D. Mocuta, R. Langer, N. Collaert (2018)
Editors' Choice—Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin StructuresECS Journal of Solid State Science and Technology, 7
Meng-Wen Wu, S. Pan, W. Hung, Deng-Sung Lin (2002)
Thermal reactions on the Cl-terminated SiGe(1 0 0) surfaceSurface Science
E. Kawakami, P. Scarlino, D. Ward, F. Braakman, F. Braakman, D. Savage, M. Lagally, M. Friesen, S. Coppersmith, M. Eriksson, L. Vandersypen (2014)
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.Nature nanotechnology, 9 9
J. Hartmann, F. Champay, V. Loup, G. Rolland, M. Semeria (2002)
Effect of HCl on the SiGe growth kinetics in reduced pressure: Chemical vapor depositionJournal of Crystal Growth, 241
J. Baribeau, H. Lafontaine (1998)
X-ray scattering investigation of the interfaces in Si/Si1-xGex superlattices on Si(001) grown by MBE and UHV-CVDThin Solid Films, 321
K. Kuhn, A. Murthy, R. Kotlyar, M. Kuhn (2010)
(Invited) Past, Present and Future: SiGe and CMOS Transistor ScalingECS Transactions
R. Loo, A. Hikavyy, L. Witters, A. Schulze, H. Arimura, D. Cott, J. Mitard, C. Porret, H. Mertens, P. Ryan, J. Wall, K. Matney, M. Wormington, P. Favia, O. Richard, H. Bender, A. Thean, N. Horiguchi, D. Mocuta, N. Collaert (2017)
Processing Technologies for Advanced Ge DevicesECS Journal of Solid State Science and Technology, 6
A. Bashir, K. Gallacher, R. Millar, D. Paul, A. Ballabio, J. Frigerio, G. Isella, D. Kriegner, M. Ortolani, J. Barthel, I. MacLaren (2018)
Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structureJournal of Applied Physics, 123
T. Walther, C. Humphreys (1999)
A quantitative study of compositional profiles of chemical vapour-deposited strained silicon–germanium/silicon layers by transmission electron microscopyJournal of Crystal Growth, 197
A. Hikavyy, I. Zyulkov, H. Mertens, L. Witters, R. Loo, N. Horiguchi (2017)
Use of high order precursors for manufacturing gate all around devicesMaterials Science in Semiconductor Processing, 70
B. Vincent, W. Vandervorst, M. Caymax, R. Loo (2009)
Influence of Si precursor on Ge segregation during ultrathin Si reduced pressure chemical vapor deposition on GeApplied Physics Letters, 95
D. Grützmacher, T. Sedgwick, A. Powell, M. Tejwani, S. Iyer, J. Cotte, F. Cardone (1993)
Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphereApplied Physics Letters, 63
S. Fukatsu, K. Fujita, H. Yaguchi, Y. Shiraki, R. Ito (1991)
Self-limitation in the surface segregation of Ge atoms during Si molecular beam epitaxial growthApplied Physics Letters, 59
S. Tsujino, A. Borak, E. Müller, M. Scheinert, C. Falub, H. Sigg, D. Grützmacher, M. Giovannini, J. Faist (2005)
Interface-roughness-induced broadening of intersubband electroluminescence in p-SiGe and n-GaInAs∕AlInAs quantum-cascade structuresApplied Physics Letters, 86
J. Baribeau, D. Lockwood, R. Syme (1996)
INTERFACES IN SI/GE ATOMIC LAYER SUPERLATTICES ON (001)SI : EFFECT OF GROWTH TEMPERATURE AND WAFER MISORIENTATIONJournal of Applied Physics, 80
Future electronic (gate-all-around transistors) and photonic devices (electro-absorption modulator and laser stack) will require SiGe/Si multilayer stacks with abrupt interfaces. Chemical vapor deposition (CVD) is a proven method to epitaxially grow such multilayer structures. However, the abruptness of the compositional change is limited by Ge segregation occurring during Si layer growth on a (Si)Ge surface. Here, we study the compositional abruptness at the interface between Si0.70Ge0.30 and Si layers epitaxially grown in a CVD reactor. The ultra-thin interface layer between SiGe and Si is characterized by transmission electron microscopy, secondary ion mass spectrometry and spectroscopic ellipsometry (SE). Our results show that a Si layer grown using a chlorinated chemistry produces the most abrupt interface. For Si deposition processes with non-chlorinated chemistry, lower growth temperature and a higher order hydride precursor result in a reduced transition thickness. Furthermore, we show that the interface thickness measured by the different metrology techniques are in good agreement, suggesting that SE can be used to evaluate the ultra-thin interface at the Si0.70Ge0.30-to-Si interface, resulting in considerably shorter development time in a production environment.
Semiconductor Science and Technology – IOP Publishing
Published: Oct 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.