Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Guillemot, B. Guillotin, Aurelien Fontaine, M. Ali, S. Catros, V. Kériquel, J. Fricain, M. Rémy, R. Bareille, J. Amédée-Vilamitjana (2011)
Laser-assisted bioprinting to deal with tissue complexity in regenerative medicineMRS Bulletin, 36
S. Eosoly, D. Brabazon, S. Lohfeld, L. Looney (2010)
Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds.Acta biomaterialia, 6 7
B. Duan, Min Wang (2010)
Encapsulation and release of biomolecules from Ca-P/PHBV nanocomposite microspheres and three-dimensional scaffolds fabricated by selective laser sinteringPolymer Degradation and Stability, 95
R. Saunders, J. Gough, B. Derby (2008)
Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.Biomaterials, 29 2
L. Koch, A. Deiwick, S. Schlie, S. Michael, Martin Gruene, V. Coger, D. Zychlinski, A. Schambach, K. Reimers, P. Vogt, B. Chichkov (2012)
Skin tissue generation by laser cell printingBiotechnology and Bioengineering, 109
C. Lam, X. Mo, S. Teoh, D. Hutmacher (2002)
Scaffold development using 3D printing with a starch-based polymerMaterials Science and Engineering: C, 20
Jinwoo Lee, Geunseon Ahn, D. Kim, D. Cho (2009)
Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithographyMicroelectronic Engineering, 86
F. Claeyssens, E. Hasan, A. Gaidukevičiūtė, D. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, Shizhou Xiao, C. Fotakis, M. Vamvakaki, B. Chichkov, M. Farsari (2009)
Three-dimensional biodegradable structures fabricated by two-photon polymerization.Langmuir : the ACS journal of surfaces and colloids, 25 5
M. Domingos, F. Chiellini, A. Gloria, L. Ambrosio, P. Bártolo, E. Chiellini (2012)
Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly(ε‐caprolactone) scaffoldsRapid Prototyping Journal, 18
B. Duan, Min Wang, W. Zhou, W. Cheung, Z. Li, W. Lu (2010)
Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.Acta biomaterialia, 6 12
P. Wiggenhauser, Daniel Müller, F. Melchels, J. Egaña, K. Storck, H. Mayer, Peter Leuthner, D. Skodacek, U. Hopfner, H. Machens, R. Staudenmaier, J. Schantz (2012)
Engineering of vascularized adipose constructsCell and Tissue Research, 347
F. Wiria, K. Leong, C. Chua, Yong Liu (2007)
Poly-ε-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sinteringActa Biomaterialia, 3
Stephen Kim, H. Utsunomiya, J. Koski, Benjamin Wu, M. Cima, J. Sohn, Kanae Mukai, L. Griffith, J. Vacanti (1998)
Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels.Annals of surgery, 228 1
R. Pirlo, Peter Wu, Jinny Liu, B. Ringeisen (2012)
PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™Biotechnology and Bioengineering, 109
E. Sachs, M. Cima, J. Cornie (1990)
Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD ModelCIRP Annals, 39
: state - ofthe - art and novel application in organ printing
P. Emans, E. Jansen, D. Iersel, T. Welting, T. Woodfield, S. Bulstra, J. Riesle, L. Rhijn, R. Kuijer (2013)
Tissue‐engineered constructs: the effect of scaffold architecture in osteochondral repairJournal of Tissue Engineering and Regenerative Medicine, 7
B. Duan, Min Wang, Z. Li, W. Chan, W. Lu (2011)
Surface modification of three-dimensional Ca-P/PHBV nanocomposite scaffolds by physical entrapment of gelatin and its in vitro biological evaluationFrontiers of Materials Science, 5
T. Weiss, A. Berg, S. Fiedler, G. Hildebrand, R. Schade, M. Schnabelrauch, K. Liefeith (2009)
Two-Photon Polymerization for Microfabrication of Three-Dimensional Scaffolds for Tissue Engineering ApplicationEngineering in Life Sciences, 9
S. Tarafder, V. Balla, Neal Davies, A. Bandyopadhyay, S. Bose (2013)
Microwave‐sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineeringJournal of Tissue Engineering and Regenerative Medicine, 7
V. Kériquel, F. Guillemot, I. Arnault, B. Guillotin, S. Miraux, J. Amédée, J. Fricain, S. Catros (2010)
In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in miceBiofabrication, 2
B. Ringeisen, C. Othon, J. Barron, Daniel Young, B. Spargo (2006)
Jet‐based methods to print living cellsBiotechnology Journal, 1
L. Moroni, J. Wijn, C. Blitterswijk (2006)
3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties.Biomaterials, 27 7
Pinar Yilgor, G. Yılmaz, M. Onal, İ. Solmaz, S. Gundogdu, S. Keskil, R. Sousa, Rui Reis, N. Hasirci, V. Hasırcı (2013)
An in vivo study on the effect of scaffold geometry and growth factor release on the healing of bone defectsJournal of Tissue Engineering and Regenerative Medicine, 7
C. Mota, D. Puppi, D. Dinucci, C. Errico, P. Bártolo, F. Chiellini (2011)
Dual-Scale Polymeric Constructs as Scaffolds for Tissue EngineeringMaterials, 4
R. Levy, Tien-Min Chu, J. Halloran, S. Feinberg, S. Hollister (1997)
CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant.AJNR. American journal of neuroradiology, 18 8
J. Mano, G. Silva, H. Azevedo, P. Malafaya, R. Sousa, S. Silva, L. Boesel, J. Oliveira, T. Santos, A. Marques, N. Neves, R. Reis (2007)
Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trendsJournal of The Royal Society Interface, 4
Geunhyung Kim, S. Ahn, Yunyoung Kim, Young-Sam Cho, W. Chun (2011)
Coaxial structured collagen–alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regenerationJournal of Materials Chemistry, 21
W. Zhou, Min Wang, W. Cheung, W. Ip (2010)
Selective Laser Sintering of Poly(L-Lactide)/Carbonated Hydroxyapatite Nanocomposite Porous Scaffolds for Bone Tissue Engineering
K. Leong, C. Cheah, C. Chua (2003)
Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs.Biomaterials, 24 13
E. Place, Julian George, Charlotte Williams, M. Stevens (2009)
Synthetic polymer scaffolds for tissue engineering.Chemical Society reviews, 38 4
B. Rai, Jane Lin, Z. Lim, R. Guldberg, D. Hutmacher, S. Cool (2010)
Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds.Biomaterials, 31 31
F. Martínez-Vázquez, F. Perera, P. Miranda, A. Pajares, F. Guiberteau (2010)
Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration.Acta biomaterialia, 6 11
B. Duan, Min Wang (2010)
Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factorJournal of The Royal Society Interface, 7
D. Puppi, A. Piras, N. Detta, D. Dinucci, F. Chiellini (2010)
Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid.Acta biomaterialia, 6 4
カニユージヤ,サトビー, クルドウー,アラン, サシユズ,エマニユエル, シマ,マイケル, チユールク,ハラルド, フアン,タイリン, ブランカジオ,デイビツド, ブレツド,ジエームズ・エフ, マイケルズ,ステイーブン・ピー, リー,サン−ジエイ−オン・ジヨン, ローダー,アラン (1993)
Three-dimensional printing techniques
(2012)
Standard terminology for additive manufacturing technologies
F. Guillemot, A. Souquet, S. Catros, B. Guillotin, J. López, M. Faucon, B. Pippenger, R. Bareille, M. Rémy, S. Bellance, P. Chabassier, J. Fricain, J. Amédée (2010)
High-throughput laser printing of cells and biomaterials for tissue engineering.Acta biomaterialia, 6 7
P. Wu, B. Ringeisen (2010)
Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP)Biofabrication, 2
J. Jansen, F. Melchels, D. Grijpma, J. Feijen (2009)
Fumaric acid monoethyl ester-functionalized poly(D,L-lactide)/N-vinyl-2-pyrrolidone resins for the preparation of tissue engineering scaffolds by stereolithography.Biomacromolecules, 10 2
(2009)
Process and equipment for rapid fabrication through bioextrusion
N. Fedorovich, Hans Wijnberg, W. Dhert, J. Alblas (2011)
Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells.Tissue engineering. Part A, 17 15-16
Wei Sun, Pallavi Lal (2002)
Recent development on computer aided tissue engineering - a reviewComputer methods and programs in biomedicine, 67 2
M. Domingos, D. Dinucci, S. Cometa, M. Alderighi, P. Bártolo, F. Chiellini (2009)
Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering ApplicationsInternational Journal of Biomaterials, 2009
B. Duan, W. Cheung, Min Wang (2011)
Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineeringBiofabrication, 3
F. Melchels, A. Barradas, C. Blitterswijk, J. Boer, J. Feijen, D. Grijpma (2010)
Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.Acta biomaterialia, 6 11
P. Miranda, A. Pajares, E. Saiz, A. Tomsia, F. Guiberteau (2008)
Mechanical properties of calcium phosphate scaffolds fabricated by robocasting.Journal of biomedical materials research. Part A, 85 1
F. Melchels, J. Feijen, D. Grijpma (2009)
A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography.Biomaterials, 30 23-24
Mingen Xu, Yanlei Li, H. Suo, Yongnian Yan, Li Liu, Qiujun Wang, Yakun Ge, Ying Xu (2010)
Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineeringBiofabrication, 2
Jae-Won Choi, R. Wicker, Seok-Hee Lee, K. Choi, C. Ha, I. Chung (2009)
Fabrication of 3D Biocompatible/Biodegradable Micro-Scaffolds Using Dynamic Mask Projection MicrostereolithographyJournal of Materials Processing Technology, 209
L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. Grijpma, J. Seppälä (2011)
Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.Acta biomaterialia, 7 11
Muwan Chen, D. Le, Anette Baatrup, J. Nygaard, S. Hein, L. Bjerre, M. Kassem, X. Zou, C. Bünger (2011)
Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering.Acta biomaterialia, 7 5
K. Tan, C. Chua, K. Leong, C. Cheah, P. Cheang, M. Bakar, S. Cha (2003)
Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends.Biomaterials, 24 18
R. Barry, R. Shepherd, Jennifer Hanson, R. Nuzzo, P. Wiltzius, J. Lewis (2009)
Direct‐Write Assembly of 3D Hydrogel Scaffolds for Guided Cell GrowthAdvanced Materials, 21
(1989)
Method and apparatus for producing parts by selective sintering
A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, Ralph Müller (2011)
Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.Acta biomaterialia, 7 3
Geunhyung Kim, S. Ahn, Hyeon Yoon, Yunyoung Kim, W. Chun (2009)
A cryogenic direct-plotting system for fabrication of 3D collagen scaffolds for tissue engineeringJournal of Materials Chemistry, 19
J. Schantz, T. Lim, Chou Ning, S. Teoh, K. Tan, Shih-Chang Wang, D. Hutmacher (2006)
Cranioplasty after Trephination using a Novel Biodegradable Burr Hole Cover: Technical Case ReportOperative Neurosurgery, 58
G. Vozzi, A. Previti, D. Rossi, A. Ahluwalia (2002)
Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering.Tissue engineering, 8 6
N. Silva, R. Sousa, Ana Pires, N. Sousa, A. Salgado, R. Reis (2012)
Interactions between Schwann and olfactory ensheathing cells with a starch/polycaprolactone scaffold aimed at spinal cord injury repair.Journal of biomedical materials research. Part A, 100 2
H. Seitz, Wolfgang Rieder, S. Irsen, B. Leukers, C. Tille (2005)
Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering.Journal of biomedical materials research. Part B, Applied biomaterials, 74 2
K. Ragaert, L. Cardon, A. Dekeyser, J. Degrieck (2010)
Machine design and processing considerations for the 3D plotting of thermoplastic scaffoldsBiofabrication, 2
S. Ho, D. Hutmacher, A. Ekaputra, Doshi Hitendra, J. Hui (2009)
The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model.Tissue engineering. Part A, 16 4
J. Barron, Peter Wu, H. Ladouceur, B. Ringeisen (2004)
Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-dimensional Cell PatternsBiomedical Microdevices, 6
Jessica Williams, A. Adewunmi, R. Schek, C. Flanagan, P. Krebsbach, S. Feinberg, S. Hollister, S. Das (2005)
Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.Biomaterials, 26 23
D. Hutmacher (2000)
Scaffolds in tissue engineering bone and cartilage.Biomaterials, 21 24
Y. Shanjani, J. Croos, R. Pilliar, R. Kandel, E. Toyserkani (2010)
Solid freeform fabrication and characterization of porous calcium polyphosphate structures for tissue engineering purposes.Journal of biomedical materials research. Part B, Applied biomaterials, 93 2
V. Mironov, G. Prestwich, G. Forgacs (2007)
Bioprinting living structuresJournal of Materials Chemistry, 17
L. Hieu, N. Zlatov, J. Sloten, E. Bohez, L. Khanh, P. Binh, P. Oris, Y. Toshev (2005)
MEDICAL RAPID PROTOTYPING APPLICATIONS AND METHODSAssembly Automation, 25
H. Almeida, P. Bártolo (2010)
Virtual topological optimisation of scaffolds for rapid prototyping.Medical engineering & physics, 32 7
J. Sobral, S. Caridade, R. Sousa, J. Mano, R. Reis (2011)
Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency.Acta biomaterialia, 7 3
D. Hutmacher, Thorsten Schantz, I. Zein, K. Ng, S. Teoh, K. Tan (2001)
Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.Journal of biomedical materials research, 55 2
D. Hutmacher, M. Sittinger, M. Risbud (2004)
Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.Trends in biotechnology, 22 7
A. Tirella, F. Vozzi, C. Maria, G. Vozzi, Tazio Sandri, D. Sassano, L. Cognolato, A. Ahluwalia (2011)
Substrate stiffness influences high resolution printing of living cells with an ink-jet system.Journal of bioscience and bioengineering, 112 1
W. Yeong, N. Sudarmadji, Haiyang Yu, C. Chua, K. Leong, S. Venkatraman, Y. Boey, L. Tan (2010)
Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.Acta biomaterialia, 6 6
E. Malone, Hod Lipson (2007)
Fab@Home: the personal desktop fabricator kitRapid Prototyping Journal, 13
L. Shor, S. Güçeri, R. Chang, J. Gordon, Q. Kang, L. Hartsock, Y. An, Wei Sun (2009)
Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineeringBiofabrication, 1
Q. Fu, E. Saiz, A. Tomsia (2011)
Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration.Acta biomaterialia, 7 10
D. Cohen, Winifred Lo, Andrew Tsavaris, David Peng, Hod Lipson, L. Bonassar (2011)
Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs.Tissue engineering. Part C, Methods, 17 2
B. Leukers, H. Gülkan, S. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz (2005)
Hydroxyapatite scaffolds for bone tissue engineering made by 3D printingJournal of Materials Science: Materials in Medicine, 16
E. Sachs, M. Cima, P. Williams, D. Brancazio, J. Cornie (1992)
Three Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD ModelJournal of Engineering for Industry, 114
A. Abarrategi, Carolina Moreno-Vicente, F. Martínez-Vázquez, A. Civantos, V. Ramos, J. Sanz-Casado, Ramón Martínez-Corriá, F. Perera, F. Mulero, P. Miranda, J. López-Lacomba (2012)
Biological Properties of Solid Free Form Designed Ceramic Scaffolds with BMP-2: In Vitro and In Vivo EvaluationPLoS ONE, 7
V. Mironov, V. Kasyanov, R. Markwald (2011)
Organ printing: from bioprinter to organ biofabrication line.Current opinion in biotechnology, 22 5
G. Ciardelli, V. Chiono, G. Vozzi, M. Pracella, A. Ahluwalia, N. Barbani, C. Cristallini, P. Giusti (2005)
Blends of Poly-( E-caprolactone ) and Polysaccharides in Tissue Engineering Applications
B. Ringeisen, Heungsoo Kim, J. Barron, D. Krizman, D. Chrisey, S. Jackman, R. Auyeung, B. Spargo (2004)
Laser printing of pluripotent embryonal carcinoma cells.Tissue engineering, 10 3-4
S. Catros, J. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Rémy, E. Lebraud, B. Desbat, J. Amédée, F. Guillemot (2011)
Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatiteBiofabrication, 3
M. Domingos, F. Chiellini, S. Cometa, E. Giglio, E. Grillo-Fernandes, P. Bártolo, E. Chiellini (2010)
Evaluation of in vitro degradation of PCL scaffolds fabricated via BioExtrusion. Part 1: Influence of the degradation environmentVirtual and Physical Prototyping, 5
F. Wang, L. Shor, A. Darling, S. Khalil, Wei Sun, S. Güçeri, A. Lau (2004)
Precision extruding deposition and characterization of cellular poly‐ε‐caprolactone tissue scaffoldsRapid Prototyping Journal, 10
F. Marga, K. Jakab, C. Khatiwala, B. Shepherd, S. Dorfman, B. Hubbard, S. Colbert, G. Forgacs (2012)
Toward engineering functional organ modules by additive manufacturingBiofabrication, 4
Christopher Chen, J. Barron, B. Ringeisen (2006)
Cell patterning without chemical surface modification: Cell-cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogelApplied Surface Science, 252
M. Stevens, Julian George (2005)
Exploring and Engineering the Cell Surface InterfaceScience, 310
P. Miranda, E. Saiz, K. Gryń, A. Tomsia (2005)
Sintering and robocasting of beta-tricalcium phosphate scaffolds for orthopaedic applications.Acta biomaterialia, 2 4
G. Ciardelli, V. Chiono, G. Vozzi, M. Pracella, A. Ahluwalia, N. Barbani, C. Cristallini, P. Giusti (2005)
Blends of Poly-(ε-caprolactone) and Polysaccharides in Tissue Engineering ApplicationsBiomacromolecules, 6
Jennifer Shepherd, S. Parker, R. Shepherd, M. Gillette, J. Lewis, R. Nuzzo (2011)
3D Microperiodic Hydrogel Scaffolds for Robust Neuronal CulturesAdvanced Functional Materials, 21
A. Gloria, T. Russo, R. Santis, L. Ambrosio (2009)
3D fiber deposition technique to make multifunctional and tailor-made scaffolds for tissue engineering applications.Journal of applied biomaterials & biomechanics : JABB, 7 3
V. Mironov, T. Boland, T. Trusk, G. Forgacs, R. Markwald (2003)
Organ printing: computer-aided jet-based 3D tissue engineering.Trends in biotechnology, 21 4
Cyrille Norotte, F. Marga, L. Niklason, G. Forgacs (2009)
Scaffold-free vascular tissue engineering using bioprinting.Biomaterials, 30 30
A. Tirella, F. Vozzi, G. Vozzi, A. Ahluwalia (2011)
PAM2 (piston assisted microsyringe): a new rapid prototyping technique for biofabrication of cell incorporated scaffolds.Tissue engineering. Part C, Methods, 17 2
J. Russias, E. Saiz, S. Deville, K. Gryń, Gao Liu, R. Nalla, A. Tomsia (2007)
Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting.Journal of biomedical materials research. Part A, 83 2
Yi Lu, Gazell Mapili, Gerry Suhali, Shaochen Chen, K. Roy (2006)
A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds.Journal of biomedical materials research. Part A, 77 2
Valerie Tsang, S. Bhatia (2004)
Three-dimensional tissue fabrication.Advanced drug delivery reviews, 56 11
S. Low, Y. Ng, T. Yeo, N. Chou (2009)
Use of Osteoplug polycaprolactone implants as novel burr-hole covers.Singapore medical journal, 50 8
C. Othon, Xingjia Wu, J. Anders, B. Ringeisen (2008)
Single-cell printing to form three-dimensional lines of olfactory ensheathing cellsBiomedical Materials, 3
Osteopore International: www.osteopore. com.sg/ [Accessed 15
W. Wang, C. Cheah, J. Fuh, Li Lu (1996)
Influence of process parameters on stereolithography part shrinkageMaterials & Design, 17
M. Woodruff, D. Hutmacher (2009)
The return of a forgotten polymer : Polycaprolactone in the 21st century
N. Fedorovich, J. Alblas, J. Wijn, W. Hennink, A. Verbout, W. Dhert (2007)
Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing.Tissue engineering, 13 8
Xiaofeng Cui, T. Boland (2009)
Human microvasculature fabrication using thermal inkjet printing technology.Biomaterials, 30 31
J. Will, Reinhold Melcher, Cornelia Treul, N. Travitzky, U. Kneser, E. Polykandriotis, R. Horch, P. Greil (2008)
Porous ceramic bone scaffolds for vascularized bone tissue regenerationJournal of Materials Science: Materials in Medicine, 19
J. Franco, P. Hunger, M. Launey, A. Tomsia, E. Saiz (2010)
Direct write assembly of calcium phosphate scaffolds using a water-based hydrogel.Acta biomaterialia, 6 1
Z. Xiong, Yongnian Yan, Shen‐guo Wang, Renji Zhang, Chao Zhang (2002)
Fabrication of porous scaffolds for bone tissue engineering via low-temperature depositionScripta Materialia, 46
D. Rohner, D. Hutmacher, T. Cheng, M. Oberholzer, B. Hammer (2003)
In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig.Journal of biomedical materials research. Part B, Applied biomaterials, 66 2
(2011)
Multimaterial stereolithography
P. Lan, J. Lee, Young-Joon Seol, D. Cho (2009)
Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modificationJournal of Materials Science: Materials in Medicine, 20
Kyle Binder, A.J. Allen, J. Yoo, A. Atala (2011)
DROP-ON-DEMAND INKJET BIOPRINTING: A PRIMER ∗Gene Therapy and Regulation, 06
A. Skardal, Jianxing Zhang, G. Prestwich (2010)
Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates.Biomaterials, 31 24
T. Boland, Xu Tao, B. Damon, B. Manley, P. Kesari, S. Jalota, S. Bhaduri (2007)
Drop-on-demand printing of cells and materials for designer tissue constructsMaterials Science and Engineering: C, 27
C. Shuai, Chengde Gao, Y. Nie, Huanlong Hu, Ying Zhou, S. Peng (2011)
Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering systemNanotechnology, 22
V. Karageorgiou, D. Kaplan (2005)
Porosity of 3D biomaterial scaffolds and osteogenesis.Biomaterials, 26 27
(1992)
Apparatus and method for creating three-dimensional objects, US Patent No. 5121329
K. Kolan, M. Leu, G. Hilmas, Roger Brown, M. Velez (2011)
Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sinteringBiofabrication, 3
(2011)
Microstereolithography. In Stereolithography: Materials, Processes and Applications, Bártolo P (ed.)
B. Guillotin, A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave, J. Amédée, F. Guillemot (2010)
Laser assisted bioprinting of engineered tissue with high cell density and microscale organization.Biomaterials, 31 28
H. Kodama (1981)
Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymerReview of Scientific Instruments, 52
P. Bártolo, M. Domingos, A. Gloria, J. Ciurana (2011)
BioCell Printing: Integrated automated assembly system for tissue engineering constructsCirp Annals-manufacturing Technology, 60
F. Melchels, J. Feijen, D. Grijpma (2010)
A review on stereolithography and its applications in biomedical engineering.Biomaterials, 31 24
(1990)
Method for production of threedimensional objects by stereolithography
D. Puppi, F. Chiellini, A. Piras, E. Chiellini (2010)
Polymeric Materials for Bone and Cartilage RepairProgress in Polymer Science, 35
T. Boland, Tao Xu, B. Damon, Xiaofeng Cui (2006)
Application of inkjet printing to tissue engineeringBiotechnology Journal, 1
N. Silva, A. Salgado, R. Sousa, J. Oliveira, A. Pedro, H. Leite-Almeida, Rui Cerqueira, A. Almeida, F. Mastronardi, J. Mano, N. Neves, N. Sousa, R. Reis (2010)
Development and characterization of a novel hybrid tissue engineering-based scaffold for spinal cord injury repair.Tissue engineering. Part A, 16 1
L. Moroni, Roka Schotel, D. Hamann, J. Wijn, C. Blitterswijk (2008)
3D Fiber‐Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue FormationAdvanced Functional Materials, 18
Busaina Dhariwala, E. Hunt, T. Boland (2004)
Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.Tissue engineering, 10 9-10
K. Arcaute, B. Mann, R. Wicker (2006)
Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs with Encapsulated CellsAnnals of Biomedical Engineering, 34
U. Gbureck, E. Vorndran, F. Müller, J. Barralet (2007)
Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices.Journal of controlled release : official journal of the Controlled Release Society, 122 2
N. Fedorovich, Elske Kuipers, D. Gawlitta, W. Dhert, J. Alblas (2011)
Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.Tissue engineering. Part A, 17 19-20
Martin Gruene, M. Pflaum, C. Hess, S. Diamantouros, S. Schlie, A. Deiwick, L. Koch, M. Wilhelmi, S. Jockenhoevel, A. Haverich, B. Chichkov (2011)
Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions.Tissue engineering. Part C, Methods, 17 10
Ruggero Gabbrielli, I. Turner, C. Bowen (2007)
Development of Modelling Methods for Materials to be Used as Bone SubstitutesKey Engineering Materials, 361-363
Tien Chu, John Halloran, S. Hollister, Stephen Feinberg (2001)
Hydroxyapatite implants with designed internal architectureJournal of Materials Science: Materials in Medicine, 12
(2002)
TheriForm technology. In ModifiedRelease DrugDelivery
Q. Hamid, J. Snyder, Chengyang Wang, Mattie Timmer, J. Hammer, Selçuk Güçeri, Wei Sun, Wei Sun (2011)
Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling deviceBiofabrication, 3
G. Vozzi, Christopher Flaim, A. Ahluwalia, S. Bhatia (2003)
Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition.Biomaterials, 24 14
R. Landers, R. Mülhaupt (2000)
Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer‐assisted design combined with computer‐guided 3D plotting of polymers and reactive oligomersMacromolecular Materials and Engineering, 282
A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, B. Chichkov (2007)
Two‐photon polymerization technique for microfabrication of CAD‐designed 3D scaffolds from commercially available photosensitive materialsJournal of Tissue Engineering and Regenerative Medicine, 1
‘Additive manufacturing’ (AM) refers to a class of manufacturing processes based on the building of a solid object from three‐dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue‐engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue‐engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures. This paper gives an extensive overview of different AM techniques classes (i.e. stereolithography, selective laser sintering, 3D printing, melt–extrusion‐based techniques, solution/slurry extrusion‐based techniques, and tissue and organ printing) employed for the development of tissue‐engineered constructs made of different materials (i.e. polymeric, ceramic and composite, alone or in combination with bioactive agents), by highlighting their principles and technological solutions. Copyright © 2012 John Wiley & Sons, Ltd.
Journal of Tissue Engineering and Regenerative Medicine – Wiley
Published: Mar 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.