Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, L. Fournès (1999)
An Overview of the Li(Ni,M)O2 Systems: Syntheses, Structures and PropertiesElectrochimica Acta, 45
K. Ohoyama, T. Kanouchi, K. Nemoto, M. Ohashi, T. Kajitani, Y. Yamaguchi (1998)
The New Neutron Powder Diffractometer with a Multi-Detector System for High-Efficiency and High-Resolution MeasurementsJapanese Journal of Applied Physics, 37
C. Delmas, G. Prado, A. Rougier, E. Suard, L. Fournès (2000)
Effect of iron on the electrochemical behaviour of lithium nickelate: from LiNiO2 to 2D-LiFeO2Solid State Ionics, 135
L. Picciotto, M. Thackeray (1986)
Lithium insertion into the spinel LiFe5O8Materials Research Bulletin, 21
H. Kobayashi, H. Shigemura, M. Tabuchi, H. Sakaebe, K. Ado, H. Kageyama, A. Hirano, R. Kanno, M. Wakita, S. Morimoto, S. Nasu (2000)
Electrochemical Properties of Hydrothermally Obtained LiCo1 − x Fe x O 2 as a Positive Electrode Material for Rechargeable Lithium BatteriesJournal of The Electrochemical Society, 147
M. Yoshio, Y. Todorov, Kohji Yamato, H. Noguchi, J. Itoh, M. Okada, T. Mouri (1998)
Preparation of LiyMnxNi1−xO2 as a cathode for lithium-ion batteriesJournal of Power Sources, 74
Tomokazu Ishikawa, A. Nagashima, K. Kandori (1991)
Structure of nickel-doped α-FeOOHJournal of Materials Science, 26
H. Kageyama, H. Shigemura, M. Tabuchi, K. Ado, H. Kobayashi (2001)
XAFS study of LiCo1-xFexO2 cathode for rechargeable lithium battery by laboratory XAFS spectrometer.Journal of synchrotron radiation, 8 Pt 2
P. Strobel, B. Lambert-Andron (1988)
Crystallographic and magnetic structure of Li2MnO3Journal of Solid State Chemistry, 75
J. Reimers, E. Rossen, C.D.W. Jones, J. Dahn (1993)
Structure and Electrochemistry of Lixfeyni1-Yo2Solid State Ionics, 61
M. Tabuchi, S. Tsutsui, C. Masquelier, R. Kanno, K. Ado, I. Matsubara, S. Nasu, H. Kageyama (1998)
Effect of Cation Arrangement on the Magnetic Properties of Lithium Ferrites (LiFeO2) Prepared by Hydrothermal Reaction and Post-annealing MethodIEEE Journal of Solid-state Circuits, 140
G. Prado, A. Rougier, L. Fournès, C. Delmas (2000)
Electrochemical Behavior of Iron‐Substituted Lithium NickelateJournal of The Electrochemical Society, 147
Y. Takeda, K. Nakahara, M. Nishijima, N. Imanishi, O. Yamamoto, M. Takano, R. Kanno (1994)
Sodium deintercalation from sodium iron oxideMaterials Research Bulletin, 29
L. Guenne, P. Deniard, A. Lecerf, P. Biensan, C. Siret, L. Fournès, R. Brec (1999)
Intrinsic instability of Fe4+ in electrochemically oxidized ramsdellite and orthorhombic Li1–xHxFeO2Journal of Materials Chemistry, 9
R. Kanno, Atsuro Kondo, M. Yonemura, R. Gover, Y. Kawamoto, M. Tabuchi, T. Kamiyama, F. Izumi, C. Masquelier, G. Rousse (1999)
The relationships between phases and structures of lithium manganese spinelsJournal of Power Sources, 81
R. Kanno, Takayuki Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, Y. Yamaguchi (1996)
Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, LiFeO2, with a Corrugated Layer StructureJournal of The Electrochemical Society, 143
J. Rosolen, M. Abbate (2001)
XANES and EXAFS of chemically deintercalated LiCo0.5Ni0.5O2Solid State Ionics, 139
M. Jansen, R. Hoppe (1973)
Zur Kenntnis der NaCl-Strukturfamilie: Neue Untersuchungen an Li2MnO3Zeitschrift für anorganische und allgemeine Chemie, 397
M. Rossouw, D. Liles, M. Thackeray (1993)
Synthesis and Structural Characterization of a Novel Layered Lithium Manganese Oxide, Li0.36Mn0.91O2, and Its Lithiated Derivative, Li1.09Mn0.91O2IEEE Journal of Solid-state Circuits, 104
M. Thackeray (1997)
Manganese oxides for lithium batteriesProgress in Solid State Chemistry, 25
M. Tabuchi, H. Shigemura, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, R. Kanno (2001)
Preparation of lithium manganese oxides containing ironJournal of Power Sources, 97
M. Tabuchi, K. Ado, H. Kobayashi, I. Matsubara, H. Kageyama, M. Wakita, S. Tsutsui, S. Nasu, Y. Takeda, C. Masquelier, A. Hirano, R. Kanno (1998)
Magnetic Properties of Metastable Lithium Iron Oxides Obtained by Solvothermal/Hydrothermal ReactionIEEE Journal of Solid-state Circuits, 141
Y. Sakurai, H. Arai, S. Okada, J. Yamaki (1997)
Low temperature synthesis and electrochemical characteristics of LiFeO2 cathodesJournal of Power Sources, 68
M. Thackeray, W. David, J. Goodenough (1982)
Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0Materials Research Bulletin, 17
M. Tabuchi, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, C. Masquelier, M. Yonemura, A. Hirano, R. Kanno (1999)
Preparation of LiCoO2 and LiCo1–xFexO2 using hydrothermal reactionsJournal of Materials Chemistry, 9
G. Prado, L. Fournès, C. Delmas (2000)
Mixed cobalt and iron substituted lithium nickelate : a structural and electrochemical studySolid State Ionics, 138
R. Alcántara, J. Jumas, P. Lavela, J. Olivier-Fourcade, C. Pérez-Vicente, J. Tirado (1999)
X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1−yO2 compoundsJournal of Power Sources, 81
K. Numata, C. Sakaki, S. Yamanaka (1999)
Synthesis and characterization of layer structured solid solutions in the system of LiCoO2–Li2MnO3Solid State Ionics, 117
K. Ado, M. Tabuchi, H. Kobayashi, H. Kageyama, O. Nakamura, Y. Inaba, R. Kanno, M. Takagi, Y. Takeda (1997)
Preparation of LiFeO2 with Alpha‐ NaFeO2‐Type Structure Using a Mixed‐Alkaline Hydrothermal MethodJournal of The Electrochemical Society, 144
Takayuki Shirane (1995)
Structure and physical properties of lithium iron oxide, LiFeO2, synthesized by ionic exchange reactionSolid State Ionics, 79
solid solution was synthesized using solid-state reaction and hydrothermal-postannealing methods and characterized as a positive electrode material for rechargeable lithium batteries. Although the maximum Fe content was limited up to 30% by solid-state reaction, the content can extend up to 75% by the hydrothermal-postannealing method. Neutron and X-ray Rietveld analysis reveal that the basic structure of the sample is a layered rock-salt structure isostructural with in which Fe ions exist on both Li (3a) and Co (3b) sites. Elemental analysis and Mössbauer spectra show Fe ions exist as 3+/4+ mixed-valence state after the samples were postannealed above 650°C. The initial charge capacity of Li/sample cells was above 100 mAh/g when the upper voltage limit was 4.3 V. The plateau around 4 V was observed for all Li/sample cells on first discharge. The maximum of initial discharge capacity was about 100 mAh/g down to 2.5 V for the Li/(50% Fe-substituted sample) cell, when the positive electrode was obtained by postannealing at 650°C in air. The capacity fading of the 4 V plateau could be suppressed by adjusting the Fe content to less than 50%, postannealing temperature between 600 and 700°C, and by 10% Ni substitution. © 2002 The Electrochemical Society. All rights reserved.
Journal of the Electrochemical Society – IOP Publishing
Published: Mar 20, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.