Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Sequence complexity of disordered protein

Sequence complexity of disordered protein Intrinsic disorder refers to segments or to whole proteins that fail to self‐fold into fixed 3D structure, with such disorder sometimes existing in the native state. Here we report data on the relationships among intrinsic disorder, sequence complexity as measured by Shannon's entropy, and amino acid composition. Intrinsic disorder identified in protein crystal structures, and by nuclear magnetic resonance, circular dichroism, and prediction from amino acid sequence, all exhibit similar complexity distributions that are shifted to lower values compared to, but significantly overlapping with, the distribution for ordered proteins. Compared to sequences from ordered proteins, these variously characterized intrinsically disordered segments and proteins, and also a collection of low‐complexity sequences, typically have obviously higher levels of protein‐specific subsets of the following amino acids: R, K, E, P, and S, and lower levels of subsets of the following: C, W, Y, I, and V. The Swiss Protein database of sequences exhibits significantly higher amounts of both low‐complexity and predicted‐to‐be‐disordered segments as compared to a non‐redundant set of sequences from the Protein Data Bank, providing additional data that nature is richer in disordered and low‐complexity segments compared to the commonness of these features in the set of structurally characterized proteins. Proteins 2001;42:38–48. © 2000 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proteins: Structure Function and Bioinformatics Wiley

Loading next page...
 
/lp/wiley/sequence-complexity-of-disordered-protein-LdfVTZvrhG

References (88)

Publisher
Wiley
Copyright
Copyright © 2001 Wiley Subscription Services
ISSN
0887-3585
eISSN
1097-0134
DOI
10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3
Publisher site
See Article on Publisher Site

Abstract

Intrinsic disorder refers to segments or to whole proteins that fail to self‐fold into fixed 3D structure, with such disorder sometimes existing in the native state. Here we report data on the relationships among intrinsic disorder, sequence complexity as measured by Shannon's entropy, and amino acid composition. Intrinsic disorder identified in protein crystal structures, and by nuclear magnetic resonance, circular dichroism, and prediction from amino acid sequence, all exhibit similar complexity distributions that are shifted to lower values compared to, but significantly overlapping with, the distribution for ordered proteins. Compared to sequences from ordered proteins, these variously characterized intrinsically disordered segments and proteins, and also a collection of low‐complexity sequences, typically have obviously higher levels of protein‐specific subsets of the following amino acids: R, K, E, P, and S, and lower levels of subsets of the following: C, W, Y, I, and V. The Swiss Protein database of sequences exhibits significantly higher amounts of both low‐complexity and predicted‐to‐be‐disordered segments as compared to a non‐redundant set of sequences from the Protein Data Bank, providing additional data that nature is richer in disordered and low‐complexity segments compared to the commonness of these features in the set of structurally characterized proteins. Proteins 2001;42:38–48. © 2000 Wiley‐Liss, Inc.

Journal

Proteins: Structure Function and BioinformaticsWiley

Published: Jan 1, 2001

Keywords: ; ;

There are no references for this article.