Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini)

Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in... We previously reported that increased endogenous nitrosation in human subjects infected with the liver fluke Opisthorchis viverrini in north-east Thailand could be a risk factor for the development of cholangiocarcinoma. In the present study we examined our hypothesis that this increased endogenous nitrosation is mediated by nitric oxide (NO) synthase induced by O.viverrini infestation. Syrian golden hamsters experimentally infected with O. viverrini liver fluke excreted in the urine significantly greater amounts of nitrate, a stable oxidization product of NO, than untreated hamsters (3.64 ± 0.86 versus 2.64 ± 0.60 μmol/hamster/day, P < 0.001). When the rapidly nitrosatable thiazolidine 4-carboxylic acid was administered orally, the infected hamsters also excreted significantly elevated levels of N-nitrosothiazolidine 4-carboxylic add than untreated hamsters (4.27 ± 2.20 versus 2.33 ± 1.13 nmol/hamster/day, P < 0.01), indicating that endogenous nitrosation is elevated in the animals with liver fluke. NO synthase activity measured in liver cytosol was about twice as high in the infected hamsters as in untreated animals. The enzyme, whose biochemical characteristics were similar to that induced in activated murine macrophages, was immunohistochemically localized in the cytoplasm of macrophages and eosinophils in the inflammation zone surrounding the parasite-containing bile ducts. These results support our hypothesis that, in fluke-infected subjects, NO synthase induction leads to excess production of NO and the observed elevated endogenous nitrosation. Since high concentrations of NO exert cytotoxic and mutagenic effects per se, excess NO produced in chronically infected/inflamed tissues may also play a role in initiation and subsequent modulation stages of cholangiocarcinoma development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Carcinogenesis Oxford University Press

Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini)

Loading next page...
 
/lp/oxford-university-press/increased-nitrosamine-and-nitrate-biosynthesis-mediated-by-nitric-LixRDJwr6G

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Oxford University Press
Copyright
© Oxford University Press
ISSN
0143-3334
eISSN
1460-2180
DOI
10.1093/carcin/15.2.271
Publisher site
See Article on Publisher Site

Abstract

We previously reported that increased endogenous nitrosation in human subjects infected with the liver fluke Opisthorchis viverrini in north-east Thailand could be a risk factor for the development of cholangiocarcinoma. In the present study we examined our hypothesis that this increased endogenous nitrosation is mediated by nitric oxide (NO) synthase induced by O.viverrini infestation. Syrian golden hamsters experimentally infected with O. viverrini liver fluke excreted in the urine significantly greater amounts of nitrate, a stable oxidization product of NO, than untreated hamsters (3.64 ± 0.86 versus 2.64 ± 0.60 μmol/hamster/day, P < 0.001). When the rapidly nitrosatable thiazolidine 4-carboxylic acid was administered orally, the infected hamsters also excreted significantly elevated levels of N-nitrosothiazolidine 4-carboxylic add than untreated hamsters (4.27 ± 2.20 versus 2.33 ± 1.13 nmol/hamster/day, P < 0.01), indicating that endogenous nitrosation is elevated in the animals with liver fluke. NO synthase activity measured in liver cytosol was about twice as high in the infected hamsters as in untreated animals. The enzyme, whose biochemical characteristics were similar to that induced in activated murine macrophages, was immunohistochemically localized in the cytoplasm of macrophages and eosinophils in the inflammation zone surrounding the parasite-containing bile ducts. These results support our hypothesis that, in fluke-infected subjects, NO synthase induction leads to excess production of NO and the observed elevated endogenous nitrosation. Since high concentrations of NO exert cytotoxic and mutagenic effects per se, excess NO produced in chronically infected/inflamed tissues may also play a role in initiation and subsequent modulation stages of cholangiocarcinoma development.

Journal

CarcinogenesisOxford University Press

Published: Feb 1, 1994

There are no references for this article.