Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.

Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting... Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biotechnology and bioengineering Pubmed

Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.

Biotechnology and bioengineering , Volume 72 (1): 9 – Jan 26, 2001

Rhamnolipid production by Pseudomonas aeruginosa under denitrification: effects of limiting nutrients and carbon substrates.


Abstract

Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification.

Loading next page...
 
/lp/pubmed/rhamnolipid-production-by-pseudomonas-aeruginosa-under-denitrification-M70j6o60yg

References (6)

  • Alexander (1991)

    637

    Biotechnol Bioeng, 38

  • Chartrain (1993)

    575

    Enzyme Microb Technol, 15

  • Cabral (1985)

    747

    Biotechnol Lett, 7

  • Chayabutra (2000)

    493

    Appl Environ Microbiol, 66

  • Burger (1963)

    2595

    J Biol Chem, 238

  • Campos-Garcia (1998)

    4442

    J Bacteriol, 180

ISSN
0006-3592
DOI
10.1002/1097-0290(20010105)72:1<25::aid-bit4>3.0.co;2-j
pmid
11084590

Abstract

Being biosurfactants, rhamnolipids create severe foaming when produced in aerobic Pseudomonas aeruginosa fermentation. The necessary reduction of aeration causes oxygen limitation and restricts cell and product concentrations. In this study, we evaluate the new strategy of rhamnolipid production under denitrification conditions. Because hydrocarbons used in earlier aerobic fermentations were not metabolizable in the absence of oxygen, other potential C substrates were examined, including palmitic acid, stearic acid, oleic acid, linoleic acid, glycerol, vegetable oil, and glucose. All were found able to support cell growth under anaerobic denitrification. The growth on the two solid substrates (palmitic acid and stearic acid) was slower but could be enhanced substantially by initial addition of rhamnolipids (0.06 g/L). The effects of different limiting nutrients (N, P, S, Mg, Ca, and Fe) were also investigated. The commonly used N limitation could not be adopted in the denitrifying fermentation because the nitrate added for anaerobic respiration would also be assimilated for growth. P limitation was most effective, giving four- to fivefold higher specific productivity than the conventional N limitation. S limitation was comparable to N limitation; Mg limitation was much poorer. Ca and Fe were ineffective in limiting cell growth. The new strategy was further evaluated in a P-limited fermentation with palmitic acid as the substrate. The fermentation was first carried out under denitrification and later switched to aerobic condition. The specific productivity under denitrification was found to be about one-third that of the aerobic condition. The denitrification process was, however, free of foaming or respiratory limitation. Much higher cell concentrations may be employed to attain higher volumetric productivity and product concentrations, for more economical product recovery and/or purification.

Journal

Biotechnology and bioengineeringPubmed

Published: Jan 26, 2001

There are no references for this article.