Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Northrup (1991)
Structure of Si(100)H: Dependence on the H chemical potential.Physical review. B, Condensed matter, 44 3
J. Perdew, A. Zunger (1981)
Self-interaction correction to density-functional approximations for many-electron systemsPhysical Review B, 23
R. Bernard, G. Comtet, G. Dujardin, V. Huc, A. Mayne (2005)
Imaging and spectroscopy of individual CdSe nanocrystals on atomically resolved surfacesApplied Physics Letters, 87
R. Miwa, W. Orellana, A. Fazzio (2005)
Substrate-dependent electronic properties of an armchair carbon nanotube adsorbed on H∕Si(001)Applied Physics Letters, 86
P. Albrecht, J. Lyding (2004)
Atomically Clean Integration of Carbon Nanotubes with Silicon, 723
D. Ceperley (2010)
THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHODLawrence Berkeley National Laboratory
S. Barraza‐Lopez, P. Albrecht, N. Romero, K. Hess (2005)
Ab initio study of semiconducting carbon nanotubes adsorbed on the Si(100) surface: Diameter- and registration-dependent atomic configurations and electronic propertiesJournal of Applied Physics, 100
Jian Chen, M. Hamon, Hui Hu, Yongsheng Chen, A. Rao, P. Eklund, R. Haddon (1998)
Solution properties of single-walled carbon nanotubesScience, 282 5386
Y. Terada, Byoung-Ki Choi, S. Heike, M. Fujimori, T. Hashizume (2003)
Pulse Injection of Carbon Nanotubes onto a H-terminated Si(100) SurfaceJapanese Journal of Applied Physics, 42
T. Odom, Jinlin Huang, P. Kim, Charles Lieber (1998)
Atomic structure and electronic properties of single-walled carbon nanotubesNature, 391
G. Peng, A. Huan, Lei Liu, Y. Feng (2006)
Structural and electronic properties of4Åcarbon nanotubes onSi(001)surfacesPhysical Review B, 74
P. Albrecht, J. Lyding (2003)
Ultrahigh-vacuum scanning tunneling microscopy and spectroscopy of single-walled carbon nanotubes on hydrogen-passivated Si(100) surfacesApplied Physics Letters, 83
A. Filho, A. Jorio, J. Hafner, Charles Lieber, R. Saito, M. Pimenta, G. Dresselhaus, M. Dresselhaus (2001)
Electronic transition energy E ii for an isolated ( n , m ) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratioPhysical Review B, 63
Jeroen Wilder, L. Venema, A. Rinzler, R. Smalley, C. Dekker (1998)
Electronic structure of atomically resolved carbon nanotubesNature, 391
Liesbeth Venema, J. Wildoer, J. Janssen, S. Tans, H.L.J.T. Tuinstra, L. Kouwenhoven, Cees Dekker (1998)
Imaging electron wave functions of quantized energy levels in carbon nanotubesScience, 283 5398
S. Berber, A. Oshiyama (2006)
Atomic and electronic structures of carbon nanotubes on Si(001) stepped surfaces.Physical review letters, 96 10
S. Doorn, D. Heller, P. Barone, M. Usrey, M. Strano (2004)
Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solutionApplied Physics A, 78
V. Derycke, R. Martel, M. Radosavljevic, A. Ross, P. Avouris (2002)
Catalyst-Free Growth of Ordered Single-Walled Carbon Nanotube NetworksNano Letters, 2
J. Boland (1993)
Scanning tunnelling microscopy of the interaction of hydrogen with silicon surfacesAdvances in Physics, 42
L. Venema, V. Meunier, P. Lambin, C. Dekker (2000)
Atomic structure of carbon nanotubes from scanning tunneling microscopyPhysical Review B, 61
M. Su, Yan Li, B. Maynor, A. Buldum, J. Lu, Jie Liu (2000)
Lattice-Oriented Growth of Single-Walled Carbon NanotubesJournal of Physical Chemistry B, 104
V. Meunier, P. Lambin (1998)
Tight-Binding Computation of the STM Image of Carbon NanotubesPhysical Review Letters, 81
J. Lyding, T. Shen, J. Hubacek, J. Tucker, G. Abeln (1994)
Nanoscale patterning and oxidation of H‐passivated Si(100)‐2×1 surfaces with an ultrahigh vacuum scanning tunneling microscopeApplied Physics Letters, 64
P. Kim, T. Odom, Jinlin Huang, Charles Lieber (1998)
Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End StatesPhysical Review Letters, 82
C. Rettig, M. Bödecker, H. Hövel (2003)
Carbon-nanotubes on graphite: alignment of lattice structureJournal of Physics D, 36
M. Hersam, N. Guisinger, J. Lyding (2000)
Silicon-based molecular nanotechnologyNanotechnology, 11
L. Ruppalt, P. Albrecht, J. Lyding (2006)
UHV-STM study of single-walled carbon nanotubes applied to the GaAs(110) and InAs(110) surfacesJournal De Physique Iv, 132
R. Feenstra, J. Stroscio (1987)
Tunneling spectroscopy of the GaAs(110) surfaceJournal of Vacuum Science & Technology B, 5
A. Jensen, J. Hauptmann, J. Nygård, J. Sadowski, P. Lindelof (2004)
Hybrid Devices from Single Wall Carbon Nanotubes Epitaxially Grown into a Semiconductor HeterostructureNano Letters, 4
T. Tsukamoto, S. Moriyama, D. Tsuya, Masaki Suzuki, T. Yamaguchi, Y. Aoyagi, K. Ishibashi (2005)
Carbon nanotube quantum dots fabricated on a GaAs∕AlGaAs two-dimensional electron gas substrateJournal of Applied Physics, 98
A. Akturk, G. Pennington, N. Goldsman (2005)
Quantum modeling and proposed designs of CNT-embedded nanoscale MOSFETsIEEE Transactions on Electron Devices, 52
L. Ruppalt, P. Albrecht, J. Lyding (2004)
Atomic resolution scanning tunneling microscope study of single-walled carbon nanotubes on GaAs(110)Journal of Vacuum Science & Technology B, 22
C. Guerra, J. Handgraaf, E. Baerends, F. Bickelhaupt (2004)
Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysisJournal of Computational Chemistry, 25
S. Stobbe, P. Lindelof, J. Nygård (2006)
Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxySemiconductor Science and Technology, 21
M. Anantram, F. Léonard (2006)
Physics of carbon nanotube electronic devicesReports on Progress in Physics, 69
W. Orellana, R. Miwa, A. Fazzio (2003)
First-principles calculations of carbon nanotubes adsorbed on Si(001).Physical review letters, 91 16
G. Márk, L. Biró, J. Gyulai (1998)
Simulation of STM images of three-dimensional surfaces and comparison with experimental data: Carbon nanotubesPhysical Review B, 58
J. Ballard, E. Carmichael, D. Shi, J. Lyding, M. Gruebele (2006)
Laser absorption scanning tunneling microscopy of carbon nanotubes.Nano letters, 6 1
Jung-Yup Lee, Jun-Hyung Cho (2006)
Band-gap opening in metallic carbon nanotubes adsorbed on H∕Si(001)Applied Physics Letters, 89
M. Tzolov, B. Chang, A. Yin, D. Straus, J. Xu, G. Brown (2004)
Electronic transport in a controllably grown carbon nanotube-silicon heterojunction array.Physical review letters, 92 7
P. Albrecht, J. Lyding (2007)
Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope.Small, 3 1
Yung-fu Chen, M. Fuhrer (2006)
Tuning from thermionic emission to ohmic tunnel contacts via doping in Schottky-barrier nanotube transistors.Nano letters, 6 9
José Soler, Emilio Artacho, Julian Gale, Alberto García, Javier Junquera, Pablo Ordejón, Daniel Sánchez-Portal (2001)
The SIESTA method for ab initio order-N materials simulationJournal of Physics: Condensed Matter, 14
L. Venema, J. Janssen, M. Buitelaar, J. Wildöer, S. Lemay, L. Kouwenhoven, C. Dekker (2000)
Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubesPhysical Review B, 62
The electronic properties of isolated single-walled carbon nanotubes (SWNTs) adsorbed onton- and p-doped hydrogen-passivated Si(100) surfaces are studied by ultrahigh vacuum scanningtunnelling spectroscopy and ab initio density-functional methods. SWNTs identified assemiconductors (s-SWNTs) have well-defined conduction and valence band edges separated by a1 eV gap, with the mid-gap Fermi level implying that the s-SWNTs areundoped. Relative s-SWNT/H-Si(100) band alignments inferred fromdI/dV plots are sensitive to the polarity of the substrate doping. Band structure calculations for a(12,4) s-SWNT corroborate experimental data: n-type (p-type) doping of the substrateleads to a shift of the surface bands lower (higher) in energy relative to those of thes-SWNT. The adsorption energy and charge transfer calculated for the (12,4) s-SWNTphysisorbed onto H-Si(100) are considerably less than values reported for the same tube onunpassivated Si(100) and are registration independent. The atomistic results presented herehave critical implications to hybrid electronic and photonic devices that rely upon a directinterface between a SWNT and a technologically relevant semiconductor such as Si orGaAs.
Nanotechnology – IOP Publishing
Published: Mar 7, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.