Loading...
Page 2
Loading...
Page 3
Loading...
Page 4
Loading...
Page 5
Loading...
Page 6
Loading...
Page 7
Loading...
Page 8
Loading...
Page 9
Loading...
Page 10
Loading...
Page 11
Loading...
Page 12
Loading...
Page 13
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
Page 11
Page 12
Page 13
University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme
(2015)
Carbon foam: Preparation and application. Carbon
Ruihan Wu, Baowei Yu, Xiaoyan Liu, Hongliang Li, Weixuan Wang, Lingyun Chen, Yitong Bai, Zhu Ming, Sheng-Tao Yang (2016)
One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solventsApplied Surface Science, 362
Grehov
Structural investigation of graphenic carbon materials obtained on nickel particles NT Functional Materials and Nanotechnologies
K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, T. Siemieniewska (2008)
Reporting Physisorption Data for Gas/Solid Systems
Schiith (2002)
eds Handbook of Porous Solids Weinheim Verlag GmbH
(2001)
Comparative investigation of defects on
Haiyan Sun, Zhen Xu, Chao Gao (2013)
Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon AerogelsAdvanced Materials, 25
M. Kruk, Zu-liang Li, M. Jaroniec, W. Betz (1999)
Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon BlacksLangmuir, 15
Grehov (2014)
Grown on Particles NT, 20
M. Inagaki, J. Qiu, Q. Guo (2015)
Carbon foam: Preparation and applicationCarbon, 87
T. Ohba, Atsushi Takase, Yuki Ohyama, H. Kanoh (2013)
Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer numberCarbon, 61
(1999)
Nitrogen adsorption study of sur48 face properties of graphitized carbon
Silvestre (2014)
Non - porous reference carbon for Ar adsorption Carbon, 19
Ohba (2013)
canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number Carbon, 14
V. Grehov, J. Kalnačs, A. Mishnev, K. Kundziņš (2016)
Synthesis of Graphenic Carbon Materials on Nickel Particles with Controlled Quantity of CarbonLatvian Journal of Physics and Technical Sciences, 53
K. Novoselov, SUPARNA DUTTASINHA, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov (2004)
Electric Field Effect in Atomically Thin Carbon FilmsScience, 306
K. Kaneko, C. Ishii, M. Ruike, H. Kuwabara (1992)
Origin of superhigh surface area and microcrystalline graphitic structures of activated carbonsCarbon, 30
(2013)
Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer
Grehov (2016)
Synthesis of graphenic carbon materials on nickel particles with controlled quantity of carbon of Physics and TechnicalJournal Sciences
V. Grehov, J. Kalnačs, M. Knite, A. Murashov, A. Vilken (2013)
Nitrogen Adsorption by Thermoexfoliated Graphite
H. Darmstadt, C. Roy (2001)
Comparative investigation of defects on carbon black surfaces by nitrogen adsorption and SIMSCarbon, 39
(2015)
Structural investigation of graphenic carbon materials obtained on nickel particles
A. Silvestre-Albero, J. Silvestre-Albero, M. Martínez-Escandell, Ryusuke Futamura, T. Itoh, K. Kaneko, F. Rodríguez-Reinoso (2014)
Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorptionCarbon, 66
M. Tynan, David Johnson, Ben Dobson, K. Coleman (2016)
Formation of 3D graphene foams on soft templated metal monoliths.Nanoscale, 8 27
S. Brunauer, P. Emmett, E. Teller (1938)
ADSORPTION OF GASES IN MULTIMOLECULAR LAYERSJournal of the American Chemical Society, 60
F. Schüth, K. Sing, J. Weitkamp (2002)
Handbook of porous solids
(2004)
Electric field effect in atomically thin carbon
N. Setoyama, Takaomi Suzuki, K. Kaneko (1998)
Simulation study on the relationship between a high resolution αs-plot and the pore size distribution for activated carbonCarbon, 36
Roy (2001)
Darmstadt Comparative investigation of defects on carbon black surfaces by nitrogen adsorption and Carbon, 11
V. Grehov, J. Kalnačs, A. Vilken, Anatolijs Mišņovs, G. Chikvaidze, M. Knite, Dmitrijs Saharovs (2014)
Graphene Nanosheets Grown on Ni Particles
Bottani (2008)
eds Adsorption by Carbons Ltd
E. Bottani, J. Tascón (2008)
Adsorption by carbons
REFERENCES1. Grehov, V., Kalnacs, J., Mishnev, A., & Kundzins, K. (2016). Synthesis of graphenic carbon materials on nickel particles with controlled quantity of carbon. Latvian Journal of Physics and Technical Sciences, 53, 56–12.2. Schiith, F., Sing, K., & Weitkamp, J. (eds.) (2002). Handbook of Porous Solids. Weinheim: Wiley-VCH Verlag GmbH.3. Bottani, E.J., & Tascon, J.M.D. (eds.) (2008). Adsorption by Carbons. Elsevier Ltd.4. Inagaki, M., Qiu, J., & Guo, Q. (2015). Carbon foam: Preparation and application. Carbon, 87, 128–152.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000352332900013&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f35. Wu, R., Yu, B., Liu, X., Li, H., Wang, W., Chen, L., … Yang, S.T. (2016). One-pot hydrothermal preparation of graphene sponge for the removal of oils and organic solvents. Appl. Surf. Sci., 362, 56–63.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000368657900008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f36. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y, Dubonos, S.V., Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.7. Sun, H., Zhen Xu Z., & Gao, Ch. (2013). Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Advanced Materials, 25, 2554-2560.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000318503600005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1002/adma.2012045768. Grehov, V., Kalnacs, J., Matzui, L., Knite, M., Murashov, A., & Vilken, A. (2013). Nitrogen adsorption by thermoexfoliated graphite. Latvian Journal of Physics and Technical Sciences, 50, 58-66.9. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Knite, M., & Kundzins, K. (2015). Structural investigation of graphenic carbon materials obtained on nickel particles. FM&NT-2015 Functional Materials and Nanotechnologies, 115–115.10. Tynan, M.K., Johnson, D.W., Dobson, B.P., & Coleman, K.S. (2016). Formation of 3D graphene foams on soft templated metal monoliths. Nanoscale, 8, 13303-13310.11. Darmstadt, H., & Roy, C. (2001). Comparative investigation of defects on carbon black surfaces by nitrogen adsorption and SIMS. Carbon, 39, 841–849.12. Kruk, M., Li, Z., Jaroniec, M., & Betz, W.R. (1999). Nitrogen adsorption study of surface properties of graphitized carbon blacks. Langmuir, 15, 1435–1441.10.1021/la980493+13. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems. Pure & App Chem, 57(4), 603–619.14. Ohba, T., Takase, A., Ohyama, Y., & Kanoh, H. (2013). Grand canonical Monte Carlo simulations of nitrogen adsorption on graphene materials with varying layer number. Carbon, 61, 40–47.15. Setoyama, N., Suzuki, T., & Kaneko, K. (1998). Simulation study on the relationship between a high resolution a-s plot and pore size distribution for activated carbon. Carbon, 36, 1459–1467.16. Brunauer, S., Emmett, P., & Teller, E. (1938). Adsorption of gases in multimolecular layers. J. Amer. Chem. Soc., 60, 309–319.10.1021/ja01269a02317. Грег, C., & Синг, К. (1984). Адсорбция, удельная поверхность, пористость. Москва: МИР.18. Kaneko, K., Ishii, C., Ruike, M., & Kuwabara, H. (1992). Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon, 30, 1075–1088.19. Silvestre-Albero, A., Silvestre-Albero, J., Martínez-Escandell, M., Futamura, R., Itoh, T., Kaneko, K., & Rodríguez-Reinoso, F. (2014). Non-porous reference carbon for N2 (77.4 K) and Ar (87.3 K) adsorption. Carbon, 66, 699–794.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000327575200077&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f320. Grehov, V., Kalnacs, J., Vilken, A., Mishnev, A., Chikvaidze, G., Knite, M., & Saharov, D. (2014). Graphene Nanosheets Grown on Ni Particles. RCBJSF-2014-FM&NT, 303-303.
Latvian Journal of Physics and Technical Sciences – de Gruyter
Published: Aug 1, 2017
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.