Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Weber, P. Ročić, A. Mellis, K. Laude, A. Lyle, D. Harrison, K. Griendling (2005)
Angiotensin II-induced hypertrophy is potentiated in mice overexpressing p22phox in vascular smooth muscle.American journal of physiology. Heart and circulatory physiology, 288 1
David Zhang, D. Gutterman (2007)
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells.American journal of physiology. Heart and circulatory physiology, 292 5
S. Ballinger (2005)
Mitochondrial dysfunction in cardiovascular disease.Free radical biology & medicine, 38 10
R. Eliseev, B. Vanwinkle, R. Rosier, T. Gunter (2004)
Diazoxide-mediated Preconditioning against Apoptosis Involves Activation of cAMP-response Element-binding Protein (CREB) and NFκB*Journal of Biological Chemistry, 279
M. Ebadi, S. Sharma (2003)
Peroxynitrite and mitochondrial dysfunction in the pathogenesis of Parkinson's disease.Antioxidants & redox signaling, 5 3
A. Panov, S. Lund, J. Greenamyre (2005)
Ca2+-induced permeability transition in human lymphoblastoid cell mitochondria from normal and Huntington’s disease individualsMolecular and Cellular Biochemistry, 269
Online Supplement Figure 4. ESR spectra and calibration of LiPc crystals suspended in media A at various partial pressures of molecular oxygen
E. Cavanagh, Bárbara Piotrkowski, N. Basso, I. Stella, F. Inserra, L. Ferder, C. Fraga (2003)
Enalapril and losartan attenuate mitochondrial dysfunction in aged ratsThe FASEB Journal, 17
G. Vatassery, J. Lai, E. Demaster, W. Smith, H. Quach (2004)
Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitriteJournal of Neuroscience Research, 75
Dzhamilja Safiulina, V. Veksler, A. Zharkovsky, A. Kaasik (2006)
Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: Physiological role in neuronesJournal of Cellular Physiology, 206
Ingrid Banmeyer, Cécile Marchand, A. Clippe, B. Knoops (2005)
Human mitochondrial peroxiredoxin 5 protects from mitochondrial DNA damages induced by hydrogen peroxideFEBS Letters, 579
Xia Shen, S. Zheng, Naira Metreveli, P. Epstein (2006)
Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy.Diabetes, 55 3
S. Kimura, Guo-Xing Zhang, A. Nishiyama, T. Shokoji, L. Yao, Yu-Yan Fan, Matlubur Rahman, Takeo Suzuki, H. Maeta, Y. Abe (2005)
Role of NAD(P)H Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Cardioprotection of Ischemic Reperfusion Injury by Angiotensin IIHypertension, 45
Ibrahim Hanna, Y. Taniyama, K. Szöcs, P. Ročić, K. Griendling (2002)
NAD(P)H oxidase-derived reactive oxygen species as mediators of angiotensin II signaling.Antioxidants & redox signaling, 4 6
A. Kleschyov, T. Münzel (2002)
Advanced spin trapping of vascular nitric oxide using colloid iron diethyldithiocarbamate.Methods in enzymology, 359
P. Mehta, K. Griendling (2007)
Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system.American journal of physiology. Cell physiology, 292 1
P. Monteiro, A. Duarte, Lino Gonçalves, L. Providência (2005)
Valsartan improves mitochondrial function in hearts submitted to acute ischemia.European journal of pharmacology, 518 2-3
Shouji Matsushima, T. Ide, M. Yamato, Hidenori Matsusaka, Fumiyuki Hattori, M. Ikeuchi, T. Kubota, K. Sunagawa, Yasuhiro Hasegawa, T. Kurihara, S. Oikawa, S. Kinugawa, H. Tsutsui (2006)
Overexpression of Mitochondrial Peroxiredoxin-3 Prevents Left Ventricular Remodeling and Failure After Myocardial Infarction in MiceCirculation, 113
Takahiko Iuchi, M. Akaike, T. Mitsui, Yasushi Ohshima, Y. Shintani, H. Azuma, Toshio Matsumoto (2003)
Glucocorticoid Excess Induces Superoxide Production in Vascular Endothelial Cells and Elicits Vascular Endothelial DysfunctionCirculation Research: Journal of the American Heart Association, 92
Wei-Gen Li, F. Miller, Hannah Zhang, D. Spitz, L. Oberley, N. Weintraub (2001)
H2O2-induced O⨪2Production by a Non-phagocytic NAD(P)H Oxidase Causes Oxidant Injury*The Journal of Biological Chemistry, 276
L. Weiner (1995)
Quantitative determination of thiol groups in low and high molecular weight compounds by electron paramagnetic resonance.Methods in enzymology, 251
T. Kunieda, T. Minamino, Jun-ichiro Nishi, Kaoru Tateno, T. Oyama, T. Katsuno, Hideyuki Miyauchi, Masayuki Orimo, S. Okada, M. Takamura, T. Nagai, S. Kaneko, I. Komuro (2006)
Angiotensin II Induces Premature Senescence of Vascular Smooth Muscle Cells and Accelerates the Development of Atherosclerosis via a p21-Dependent PathwayCirculation, 114
S. Kimura, Guo-Xing Zhang, A. Nishiyama, T. Shokoji, L. Yao, Yu-Yan Fan, Matlubur Rahman, Y. Abe (2005)
Mitochondria-Derived Reactive Oxygen Species and Vascular MAP Kinases: Comparison of Angiotensin II and DiazoxideHypertension, 45
K. Liu, P. Gast, M. Moussavi, S. Norby, N. Vahidi, Tadeusz Walczak, M. Wu, Harold Swartz (1993)
Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems.Proceedings of the National Academy of Sciences of the United States of America, 90 12
A. Costa, Casey Quinlan, A. Andrukhiv, I. West, M. Jabůrek, K. Garlid (2006)
The direct physiological effects of mitoK(ATP) opening on heart mitochondria.American journal of physiology. Heart and circulatory physiology, 290 1
Online Supplement Figure 2. Measurement of H 2 O 2 production by co-oxidation of PPH in horseradish peroxidase (HRP) -acetamidophenol (AAP) reaction
T. Ide, H. Tsutsui, S. Hayashidani, D. Kang, N. Suematsu, Kei-ichiro Nakamura, H. Utsumi, N. Hamasaki, Akira Takeshita (2001)
Mitochondrial DNA Damage and Dysfunction Associated With Oxidative Stress in Failing Hearts After Myocardial InfarctionCirculation Research: Journal of the American Heart Association, 88
Zhaosheng Han, Yeong-Renn Chen, C. Jones, G. Meenakshisundaram, J. Zweier, B. Alevriadou (2007)
Shear-induced reactive nitrogen species inhibit mitochondrial respiratory complex activities in cultured vascular endothelial cells.American journal of physiology. Cell physiology, 292 3
K. Laude, H. Cai, B. Fink, N. Hoch, D. Weber, Louise McCann, G. Kojda, T. Fukai, H. Schmidt, S. Dikalov, S. Ramasamy, Graciela Gamez, K. Griendling, D. Harrison (2005)
Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22phox in mice.American journal of physiology. Heart and circulatory physiology, 288 1
David Zhang, Ya-Fei Chen, W. Campbell, A. Zou, G. Gross, Pin-Lan Li (2001)
Characteristics and Superoxide-Induced Activation of Reconstituted Myocardial Mitochondrial ATP-Sensitive Potassium ChannelsCirculation Research: Journal of the American Heart Association, 89
E. Cavanagh, J. Toblli, L. Ferder, Bárbara Piotrkowski, I. Stella, F. Inserra (2006)
Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine.American journal of physiology. Regulatory, integrative and comparative physiology, 290 6
L. Valdez, S. Alvarez, S. Arnaiz, F. Schöpfer, M. Carreras, J. Poderoso, A. Boveris (2000)
Reactions of peroxynitrite in the mitochondrial matrix.Free radical biology & medicine, 29 3-4
G. Vogiatzi, D. Tousoulis, C. Stefanadis (2009)
The role of oxidative stress in atherosclerosis.Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese, 50 5
C. Perier, K. Tieu, C. Guégan, C. Caspersen, V. Jackson-Lewis, V. Carelli, A. Martinuzzi, M. Hirano, S. Przedborski, M. Vila (2005)
Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage.Proceedings of the National Academy of Sciences of the United States of America, 102 52
P. Brookes, J. Land, J. Clark, S. Heales (1998)
Peroxynitrite and Brain Mitochondria: Evidence for Increased Proton LeakJournal of Neurochemistry, 70
H. Rubbo, R. Radi, M. Trujillo, R. Telleri, B. Kalyanaraman, S. Barnes, Marion Kirk, B. Freeman (1994)
Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives.The Journal of biological chemistry, 269 42
S. Dikalov, B. Fink (2005)
ESR techniques for the detection of nitric oxide in vivo and in tissues.Methods in enzymology, 396
L. Weiner (1995)
[8] Quantitative determination of thiol groups in lowand high molecular weight compounds by electron paramagnetic resonanceMethods in Enzymology, 251
Jason Wall, Jing Wei, M. Ly, Peter Belmont, J. Martindale, Diem Tran, Jun Sun, W. Chen, Wen‐mei Yu, P. Oeller, S. Briggs, Å. Gustafsson, M. Sayen, R. Gottlieb, C. Glembotski (2006)
Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator, MAP kinase kinase 6.American journal of physiology. Heart and circulatory physiology, 291 5
A. Panov, S. Dikalov, Natalia Shalbuyeva, Georgia Taylor, T. Sherer, T. Greenamyre (2005)
Rotenone Model of Parkinson DiseaseJournal of Biological Chemistry, 280
R. Arruda, V. Peotta, S. Meyrelles, E. Vasquez (2005)
Evaluation of Vascular Function in Apolipoprotein E Knockout Mice With Angiotensin-Dependent Renovascular HypertensionHypertension, 46
F. Muller, Yuhong Liu, H. Remmen (2004)
Complex III Releases Superoxide to Both Sides of the Inner Mitochondrial Membrane*Journal of Biological Chemistry, 279
A. Rego, C. Oliveira (2003)
Mitochondrial Dysfunction and Reactive Oxygen Species in Excitotoxicity and Apoptosis: Implications for the Pathogenesis of Neurodegenerative DiseasesNeurochemical Research, 28
B. Fink, K. Laude, Louise McCann, Abdulrahman Doughan, D. Harrison, S. Dikalov (2004)
Detection of intracellular superoxide formation in endothelial cells and intact tissues using dihydroethidium and an HPLC-based assay.American journal of physiology. Cell physiology, 287 4
E. Cadenas, K. Davies (2000)
Mitochondrial free radical generation, oxidative stress, and aging.Free radical biology & medicine, 29 3-4
A. Bulteau, L. Szweda, B. Friguet (2006)
Mitochondrial protein oxidation and degradation in response to oxidative stress and agingExperimental Gerontology, 41
Integrative Physiology Molecular Mechanisms of Angiotensin II–Mediated Mitochondrial Dysfunction Linking Mitochondrial Oxidative Damage and Vascular Endothelial Dysfunction Abdulrahman K. Doughan, David G. Harrison, Sergey I. Dikalov Abstract—Mitochondrial dysfunction is a prominent feature of most cardiovascular diseases. Angiotensin (Ang) II is an important stimulus for atherogenesis and hypertension; however, its effects on mitochondrial function remain unknown. We hypothesized that Ang II could induce mitochondrial oxidative damage that in turn might decrease endothelial nitric oxide (NO˙) bioavailability and promote vascular oxidative stress. The effect of Ang II on mitochondrial ROS, mitochondrial respiration, membrane potential, glutathione, and endothelial NO˙ was studied in isolated mitochondria and intact bovine aortic endothelial cells using electron spin resonance, dihydroethidium high-performance liquid chromatography – based assay, Amplex Red and cationic dye fluorescence. Ang II significantly increased mitochondrial H O production. This increase was blocked by preincubation of intact cells with apocynin (NADPH oxidase inhibitor), 2 2 uric acid (scavenger of peroxynitrite), chelerythrine (protein kinase C inhibitor), N -nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), 5-hydroxydecanoate (mitochondrial ATP-sensitive potassium channels inhibitor), or gliben- phox clamide. Depletion of p22 subunit of NADPH oxidase with small interfering RNA also inhibited Ang II–mediated mitochondrial ROS production. Ang II depleted mitochondrial glutathione,
Circulation Research – Wolters Kluwer Health
Published: Feb 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.