Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Fell, K. Fong, K. McIntosh, E. Franklin, A. Blakers (2014)
3-D Simulation of Interdigitated-Back-Contact Silicon Solar Cells With Quokka Including Perimeter LossesIEEE Journal of Photovoltaics, 4
R. Brendel, P. Basore, F. Dross, Jan Schmidt, S. Kirstein, T. Neubert, A. Merkle, N. Harder, R. Peibst (2013)
High-Efficiency RISE-IBC Solar Cells: Influence of Rear Side-Passivation on pn-Junction Meander Recombination
R. Brendel (2012)
Modeling solar cells with the dopant‐diffused layers treated as conductive boundariesProgress in Photovoltaics: Research and Applications, 20
Swanson (1984)
Point-contact silicon solar cellsIEEE Transactions on Electron Devices, 31
M. Dahlinger, B. Bazer-Bachi, T. Roder, J. Köhler, R. Zapf‐Gottwick, J. Werner (2013)
22.0% Efficient Laser Doped back Contact Solar CellsEnergy Procedia, 38
Y. Wan, K. McIntosh, A. Thomson, A. Cuevas (2013)
Low surface recombination velocity by low-absorption silicon nitride on c-Si2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2
C. Reichel, F. Granek, M. Hermle, S. Glunz (2012)
Back‐contacted back‐junction n‐type silicon solar cells featuring an insulating thin film for decoupling charge carrier collection and metallization geometryProgress in Photovoltaics: Research and Applications, 21
S. Phang, D. Macdonald (2011)
Direct comparison of boron, phosphorus, and aluminum gettering of iron in crystalline siliconJournal of Applied Physics, 109
M. Green (2009)
The path to 25% silicon solar cell efficiency: History of silicon cell evolutionProgress in Photovoltaics: Research and Applications, 17
B. O’Sullivan, M. Debucquoy, Sukhvinder Singh, A. Castro, M. Payo, I. Gordon, J. Szlufcik, N. Posthuma, J. Poortmans (2013)
Process Simplification for High Efficiency, Small Area Interdigitated Back Contact Silicon Solar Cells
A. Schenk (1998)
Finite-temperature full random-phase approximation model of band gap narrowing for silicon device simulationJournal of Applied Physics, 84
K. McIntosh, M.J. Cudzinovic, D.D. Smith, W. Mulligan, R. Swanson (2003)
The choice of silicon wafer for the production of low-cost rear-contact solar cells3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of, 1
D. Kane, R. Swanson (1985)
Measurement of the emitter saturation current by a contactless photoconductivity decay method
Coveme spa
F. Granek, M. Hermle, D. Huljic, O. Schultz‐Wittmann, S. Glunz (2009)
Enhanced lateral current transport via the front N+ diffused layer of n‐type high‐efficiency back‐junction back‐contact silicon solar cellsProgress in Photovoltaics: Research and Applications, 17
I. Bennett, W. Eerenstein, V. Rosca (2013)
Reducing the Cost of Back-contact Module TechnologyEnergy Procedia, 38
N. Zin, A. Blakers, E. Franklin, K. Fong, T. Kho, Chog Barugkin, E. Wang (2014)
Etch-back simplifies interdigitated back contact solar cells2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
D. Walter, A. Fell, E. Franklin, Da Wang, K. Fong, T. Kho, K. Weber, A. Blakers (2015)
Damage-free ultraviolet nanosecond laser ablation for high efficiency back contact solar cell fabricationSolar Energy Materials and Solar Cells, 136
A. Fell, S. Surve, E. Franklin, K. Weber (2014)
Characterization of Laser-Doped Localized p-n Junctions for High Efficiency Silicon Solar CellsIEEE Transactions on Electron Devices, 61
C. Reichel, F. Granek, M. Hermle, S. Glunz (2011)
Investigation of electrical shading effects in back-contacted back-junction silicon solar cells using the two-dimensional charge collection probability and the reciprocity theoremJournal of Applied Physics, 109
Haase Haase, Eidelloth Eidelloth, Horbelt Horbelt, Bothe Bothe, Garralaga Rojas Garralaga Rojas, Brendel Brendel (2011)
Loss analysis of back‐contact back‐junction thin‐film monocrystalline silicon solar cellsJournal of Applied Physics, 110
David Smith, P. Cousins, A. Masad, Staffan Westerberg, M. Defensor, Reynold Ilaw, Tim Dennis, Rhea Daquin, N. Bergstrom, Arjelene Leygo, Xi Zhu, Bennet Meyers, Ben Bourne, M. Shields, Doug Rose (2013)
SunPower's Maxeon Gen III solar cell: High efficiency and energy yield2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)
P. Cousins, David Smith, H. Luan, Jane Manning, Tim Dennis, A. Waldhauer, K. Wilson, Gabriel Harley, W. Mulligan (2010)
Generation 3: Improved performance at lower cost2010 35th IEEE Photovoltaic Specialists Conference
A. Thomson, N. Grant, K. Chern, T. Kho (2014)
Improved Diffused-region Recombination-current Pre-factor AnalysisEnergy Procedia, 55
J. Libal, K. Peter, R. Kopecek, C. Comparotto, R. Roescu, L. Koduvelikulathu, G. Galbiati, V. Mihailetchi, A. Halm (2012)
The Zebra Cell Concept - Large Area n-Type Interdigitated Back Contact Solar Cells and One-Cell Modules Fabricated Using Standard Industrial Processing Equipment
A. Richter, M. Hermle, S. Glunz (2013)
Reassessment of the Limiting Efficiency for Crystalline Silicon Solar CellsIEEE Journal of Photovoltaics, 3
David Smith, P. Cousins, Staffan Westerberg, Russelle Jesus-Tabajonda, Gerly Aniero, Yu-chen Shen (2014)
Toward the Practical Limits of Silicon Solar CellsIEEE Journal of Photovoltaics, 4
N. Grant, K. McIntosh, J. Tan (2012)
Evaluation of the Bulk Lifetime of Silicon Wafers by Immersion in Hydrofluoric Acid and IlluminationECS Journal of Solid State Science and Technology, 1
M. Lammert, R. Schwartz (1977)
The interdigitated back contact solar cell: A silicon solar cell for use in concentrated sunlightIEEE Transactions on Electron Devices, 24
P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, U. Klug, A. Schoonderbeek, U. Stute, R. Brendel (2007)
Laser ablation of SiO2 for locally contacted Si solar cells with ultra‐short pulsesProgress in Photovoltaics: Research and Applications, 15
K. McIntosh, T. Kho, K. Fong, S. Baker-Finch, Y. Wan, N. Zin, E. Franklin, D. Wang, M. Abbott, N. Grant, E. Wang, M. Stocks, A. Blakers (2014)
Quantifying the optical losses in back-contact solar cells2014 IEEE 40th Photovoltaic Specialist Conference (PVSC)
R. Brendel, S. Dreissigacker, N. Harder, P. Altermatt (2008)
Theory of analyzing free energy losses in solar cellsApplied Physics Letters, 93
A. Knorz, M. Peters, A. Grohe, Christian Harmel, R. Preu (2009)
Selective laser ablation of SiNx layers on textured surfaces for low temperature front side metallizationsProgress in Photovoltaics: Research and Applications, 17
(2012)
Presentation at 27th
R. Swanson (1986)
Point-contact solar cells: Modeling and experimentSolar Cells, 17
(1997)
Backside-contact silicon solar cells with improved efficiency for the`96 world solar challenge. 14th EPVSC
M. Taguchi, Ayumu Yano, S. Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, K. Fujita, E. Maruyama (2013)
24.7% Record Efficiency HIT Solar Cell on Thin Silicon WaferIEEE Journal of Photovoltaics, 4
J. Greulich, H. Höffler, U. Würfel, S. Rein (2013)
Numerical power balance and free energy loss analysis for solar cells including optical, thermodynamic, and electrical aspectsJournal of Applied Physics, 114
J. Nakamura (2014)
Development of Hetero-junction Back Contact Si Solar Cells Towards 25% EfficiencyThe Japan Society of Applied Physics
R. Swanson (1986)
Point Contact Silicon Solar Cells, 0706
J. Nakamura, N. Asano, T. Hieda, C. Okamoto, Hiroyuki Katayama, Kyotaro Nakamura (2014)
Development of Heterojunction Back Contact Si Solar CellsIEEE Journal of Photovoltaics, 4
A. Fell (2013)
A Free and Fast Three-Dimensional/Two-Dimensional Solar Cell Simulator Featuring Conductive Boundary and Quasi-Neutrality ApproximationsIEEE Transactions on Electron Devices, 60
M. Aleman, J. Das, T. Janssens, B. Pawlak, N. Posthuma, J. Robbelein, Sukhvinder Singh, K. Baert, J. Poortmans, J. Fernandez, K. Yoshikawa, P. Verlinden (2012)
Development and Integration of a High Efficiency Baseline Leading to 23% IBC CellsEnergy Procedia, 27
K. McIntosh, S. Baker-Finch (2012)
OPAL 2: Rapid optical simulation of silicon solar cells2012 38th IEEE Photovoltaic Specialists Conference
K. Williams, Kishan Gupta, M. Wasilik (2003)
Etch rates for micromachining processing-Part IIIEEE\/ASME Journal of Microelectromechanical Systems, 12
P. Würfel, U. Würfel (2009)
Physics of solar cells : from basic principles to advanced concepts
Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, Toshihiro Kinoshita, H. Kanno, H. Sakata, E. Maruyama, Makoto Tanaka (2009)
Twenty-two percent efficiency HIT solar cellSolar Energy Materials and Solar Cells, 93
G. Reeves, H. Harrison (1982)
Obtaining the specific contact resistance from transmission line model measurementsIEEE Electron Device Letters, 3
K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, Motohide Kai, Naoki Yoshimura, Tsutomu Yamaguchi, Y. Ichihashi, Takahiro Mishima, Naoteru Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto (2014)
Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar CellIEEE Journal of Photovoltaics, 4
P. Engelhart, N. Harder, R. Grischke, A. Merkle, R. Meyer, R. Brendel (2007)
Laser structuring for back junction silicon solar cellsProgress in Photovoltaics: Research and Applications, 15
J. Werner, R. Zapf‐Gottwick, G. Kulushich (2011)
Numerical Simulation of Fully Laser Processed Back-Contact Back-Junction Solar Cells
F. Haase, S. Eidelloth, R. Horbelt, K. Bothe, E. Rojas, R. Brendel (2011)
Loss analysis of back-contact back-junction thin-film monocrystalline silicon solar cells2011 37th IEEE Photovoltaic Specialists Conference
(2014)
Development of High Efficiency Interdigitated Back Contact Silicon Solar Cells and Modules with Industrial Processing Technologies. 6 th World Conference on Photovoltaic Energy Conversion
Press Release Trina Solar
K. Fong, Kho Teng, K. McIntosh, A. Blakers, E. Franklin, N. Zin, A. Fell (2013)
Optimisation of N+ Diffusion and Contact Size of IBC Solar Cells
A. Cuevas, D. Yan (2013)
Misconceptions and Misnomers in Solar CellsIEEE Journal of Photovoltaics, 3
The interdigitated back contact (IBC) solar cells developed at the Australian National University have resulted in an independently confirmed (Fraunhofer Institut für Solare Energiesysteme (ISE) CalLab) designated‐area efficiency of 24.4 ± 0.7%, featuring short‐circuit current density of 41.95 mA/cm2, open‐circuit voltage of 703 mV and 82.7% fill factor. The cell, 2 × 2 cm2 in area, was fabricated on a 230 µm thick 1.5 Ω cm n‐type Czochralski wafer, utilising plasma‐enhanced chemical vapour deposition (CVD) SiNx front‐surface passivation without front‐surface diffusion, rear‐side thermal oxide/low‐pressure CVD Si3N4 passivation stack and evaporated aluminium contacts with a finger‐to‐finger pitch of 500 µm. This paper describes the design and fabrication of lab‐scale high‐efficiency IBC cells. Characterisation of optical and electronic properties of the best produced cell is made, with subsequent incorporation into 3D device modelling used to accurately quantify all losses. Loss analysis demonstrates that bulk and emitter recombination, bulk resistive and optical losses are dominant and suggests a clear route to efficiency values in excess of 25%. Additionally, laser processing is explored as a means to simplify the manufacture of IBC cells, with a confirmed efficiency value of 23.5% recorded for cells fabricated using damage‐free deep UV laser ablation for contact formation. Meanwhile all‐laser‐doped cells, where every doping and patterning step is performed by lasers, are demonstrated with a preliminary result of 19.1% conversion efficiency recorded. Copyright © 2014 John Wiley & Sons, Ltd.
Progress in Photovoltaics: Research & Applications – Wiley
Published: Apr 1, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.