Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Downloaded from genesdev.cshlp.org on December 16, 2021 - Published by Cold Spring Harbor Laboratory Press Telomerase- and recombination- independent immortalization of budding yeast Laura Maringele and David Lydall University of Newcastle, School of Clinical Medical Sciences-Gerontology, Newcastle upon Tyne, NE4 6BE, United Kingdom It is generally assumed that there are only two ways to maintain the ends of chromosomes in yeast and mammalian nuclei: telomerase and recombination. Without telomerase and recombination, cells enter senescence, a state of permanent growth arrest. We found that the decisive role in preventing senescent budding yeast cells from dividing is played by the Exo1 nuclease. In the absence of Exo1, telomerase- and recombination-defective yeast can resume cell cycle progression, despite degradation of telomeric regions from many chromosomes. As degradation progresses toward internal chromosomal regions, a progressive decrease in viability would be expected, caused by loss of essential genes. However, this was not the case. We demonstrate that extensive degradation and loss of essential genes can be efficiently prevented through a little-studied mechanism of DNA double-strand-break repair, in which short DNA palindromes induce formation of large DNA palindromes. For the first time, we show that large palindromes form as a natural consequence of postsenescence growth
Genes & Development – Unpaywall
Published: Oct 15, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.