Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO−-MMP-9 Pathway

Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves... Tissue plasminogen activator (t-PA) has a restrictive therapeutic window within 4.5 h after ischemic stroke with the risk of hemorrhagic transformation (HT) and neurotoxicity when it is used beyond the time window. In the present study, we tested the hypothesis that baicalin, an active compound of medicinal plant, could attenuate HT in cerebral ischemia stroke with delayed t-PA treatment. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 4.5 h and then continuously received t-PA infusion (10 mg/kg) for 0.5 h and followed by 19-h reperfusion. Baicalin (50, 100, 150 mg/kg) was administrated via femoral vein at 4.5 h after MCAO cerebral ischemia. Delayed t-PA infusion significantly increased the mortality rate, induced HT, blood-brain barrier (BBB) damage, and apoptotic cell death in the ischemic brains and exacerbated neurological outcomes in cerebral ischemia-reperfusion rats at 24 h after MCAO cerebral ischemia. Co-treatment of baicalin significantly reduced the mortality rates, ameliorated the t-PA-mediated BBB disruption and HT. Furthermore, baicalin showed to directly scavenge peroxynitrite and inhibit MMP-9 expression and activity in the ischemic brains with the delayed t-PA treatment. Baicalin had no effect on the t-PA fibrinolytic function indicated by t-PA activity assay. Taken together, baicalin could attenuate t-PA-mediated HT and improve the outcomes of ischemic stroke treatment possibly via inhibiting peroxynitrite-mediated MMP-9 activation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Translational Stroke Research Springer Journals

Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO−-MMP-9 Pathway

Loading next page...
 
/lp/springer-journals/baicalin-attenuates-blood-brain-barrier-disruption-and-hemorrhagic-P0GgY3lZo0

References (81)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology; Cardiology; Neurosurgery; Vascular Surgery
ISSN
1868-4483
eISSN
1868-601X
DOI
10.1007/s12975-017-0598-3
pmid
29275501
Publisher site
See Article on Publisher Site

Abstract

Tissue plasminogen activator (t-PA) has a restrictive therapeutic window within 4.5 h after ischemic stroke with the risk of hemorrhagic transformation (HT) and neurotoxicity when it is used beyond the time window. In the present study, we tested the hypothesis that baicalin, an active compound of medicinal plant, could attenuate HT in cerebral ischemia stroke with delayed t-PA treatment. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 4.5 h and then continuously received t-PA infusion (10 mg/kg) for 0.5 h and followed by 19-h reperfusion. Baicalin (50, 100, 150 mg/kg) was administrated via femoral vein at 4.5 h after MCAO cerebral ischemia. Delayed t-PA infusion significantly increased the mortality rate, induced HT, blood-brain barrier (BBB) damage, and apoptotic cell death in the ischemic brains and exacerbated neurological outcomes in cerebral ischemia-reperfusion rats at 24 h after MCAO cerebral ischemia. Co-treatment of baicalin significantly reduced the mortality rates, ameliorated the t-PA-mediated BBB disruption and HT. Furthermore, baicalin showed to directly scavenge peroxynitrite and inhibit MMP-9 expression and activity in the ischemic brains with the delayed t-PA treatment. Baicalin had no effect on the t-PA fibrinolytic function indicated by t-PA activity assay. Taken together, baicalin could attenuate t-PA-mediated HT and improve the outcomes of ischemic stroke treatment possibly via inhibiting peroxynitrite-mediated MMP-9 activation.

Journal

Translational Stroke ResearchSpringer Journals

Published: Dec 23, 2017

There are no references for this article.