Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Hou, Zhong-zheng Zhu, Xiao Zhang, F. Nordio, M. Bonzini, J. Schwartz, M. Hoxha, L. Dioni, B. Marinelli, V. Pegoraro, P. Apostoli, P. Bertazzi, A. Baccarelli (2010)
Airborne particulate matter and mitochondrial damage: a cross-sectional studyEnvironmental Health, 9
E. Houseman, William Accomando, D. Koestler, B. Christensen, C. Marsit, H. Nelson, J. Wiencke, K. Kelsey (2012)
DNA methylation arrays as surrogate measures of cell mixture distributionBMC Bioinformatics, 13
Myungjin Kim, T. Long, Kazuko Arakawa, Renwei Wang, Mimi Yu, P. Laird (2010)
DNA Methylation as a Biomarker for Cardiovascular Disease RiskPLoS ONE, 5
G. Miller, E. Chen, A. Fok, H. Walker, A. Lim, Erin Nicholls, S. Cole, M. Kobor (2009)
Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signalingProceedings of the National Academy of Sciences, 106
Hong Ji, L. Ehrlich, J. Seita, Peter Murakami, A. Doi, P. Lindau, Hwajin Lee, Martin Aryee, R. Irizarry, Kitai Kim, Derrick Rossi, M. Inlay, T. Serwold, H. Karsunky, Lena Ho, G. Daley, I. Weissman, A. Feinberg (2010)
A comprehensive methylome map of lineage commitment from hematopoietic progenitorsNature, 467
Georg Wieczorek, A. Asemissen, F. Model, Ivana Turbachova, S. Floess, Volker Liebenberg, U. Baron, D. Stauch, K. Kotsch, J. Pratschke, A. Hamann, C. Loddenkemper, H. Stein, H. Volk, U. Hoffmüller, A. Grützkau, A. Mustea, J. Huehn, C. Scheibenbogen, S. Olek (2009)
Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue.Cancer research, 69 2
H. Byun, F. Nordio, B. Coull, L. Tarantini, L. Hou, M. Bonzini, P. Apostoli, P. Bertazzi, A. Baccarelli (2012)
Temporal Stability of Epigenetic Markers: Sequence Characteristics and Predictors of Short-Term DNA Methylation VariationsPLoS ONE, 7
Scott Langevin, D. Koestler, B. Christensen, Rondi Butler, J. Wiencke, H. Nelson, E. Houseman, C. Marsit, K. Kelsey (2012)
Peripheral blood DNA methylation profiles are indicative of head and neck squamous cell carcinoma: An epigenome-wide association studyEpigenetics, 7
A. Nicol, J. Botterill (2004)
Environmental Health: A Global Access Science Source
Yun Liu, Martin Aryee, L. Padyukov, M. Fallin, E. Hesselberg, Á. Rúnarsson, Lovisa Reinius, N. Acevedo, M. Taub, M. Ronninger, K. Shchetynsky, A. Scheynius, J. Kere, L. Alfredsson, L. Klareskog, Tomas Ekström, Andrew Feinberg (2013)
Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in Rheumatoid ArthritisNature biotechnology, 31
A. Baccarelli, R. Wright, V. Bollati, A. Litonjua, A. Zanobetti, L. Tarantini, D. Sparrow, P. Vokonas, J. Schwartz (2010)
Ischemic Heart Disease and Stroke in Relation to Blood DNA MethylationEpidemiology, 21
A. Teschendorff, U. Menon, A. Gentry-Maharaj, S. Ramus, S. Gayther, S. Apostolidou, Allison Jones, M. Lechner, S. Beck, I. Jacobs, M. Widschwendter (2009)
An Epigenetic Signature in Peripheral Blood Predicts Active Ovarian CancerPLoS ONE, 4
C. Marsit, D. Koestler, B. Christensen, M. Karagas, E. Houseman, Karl Kelsey (2011)
DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer.Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 29 9
C. Marsit, B. Christensen (2013)
Blood-derived DNA methylation markers of cancer risk.Advances in experimental medicine and biology, 754
J. Alegría-Torres, F. Barretta, L. Batres-Esquivel, Leticia Carrizales-Yáñez, I. Pérez-Maldonado, A. Baccarelli, P. Bertazzi (2013)
Epigenetic markers of exposure to polycyclic aromatic hydrocarbons in Mexican brickmakers: a pilot study.Chemosphere, 91 4
S. Lewis, I. Pavord, John Stringer, A. Knox, S. Weiss, J. Britton (2001)
The relation between peripheral blood leukocyte counts and respiratory symptoms, atopy, lung function, and airway responsiveness in adults.Chest, 119 1
(2009)
Epidemiological study on the Genetics and Environment of Asthma (EGEA). Heterogeneity of asthma according to blood inflammatory patterns, 64
V. Rakyan, T. Down, N. Thorne, Paul Flicek, Eugene Kulesha, S. Gräf, E. Tomazou, L. Bäckdahl, Nathan Johnson, M. Herberth, K. Howe, D. Jackson, M. Miretti, H. Fiegler, J. Marioni, E. Birney, T. Hubbard, N. Carter, S. Tavaré, S. Beck (2008)
An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs).Genome research, 18 9
A. Teschendorff, Joanna Zhuang, M. Widschwendter (2011)
Independent surrogate variable analysis to deconvolve confounding factors in large-scale microarray profiling studiesBioinformatics, 27 11
B. Christensen, E. Houseman, C. Marsit, S. Zheng, M. Wrensch, J. Wiemels, Heather Nelson, M. Karagas, J. Padbury, R. Bueno, D. Sugarbaker, R. Yeh, J. Wiencke, K. Kelsey (2009)
Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island ContextPLoS Genetics, 5
Michael Bocker, I. Hellwig, Achim Breiling, V. Eckstein, A. Ho, F. Lyko (2011)
Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging.Blood, 117 19
Bonnie Joubert, S. Håberg, R. Nilsen, Xuting Wang, S. Vollset, S. Murphy, Zhiqing Huang, C. Hoyo, Ø. Midttun, Lea Cupul‐Uicab, P. Ueland, Michael Wu, W. Nystad, D. Bell, S. Peddada, S. London (2012)
450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during PregnancyEnvironmental Health Perspectives, 120
R. Nadif, Valérie Siroux, M. Oryszczyn, C. Ravault, C. Pison, I. Pin, Francine Kauffmann (2009)
Heterogeneity of asthma according to blood inflammatory patternsThorax, 64
J. Mill, Thomas Tang, Z. Kaminsky, Tarang Khare, Simin Yazdanpanah, Luigi Bouchard, Peixin Jia, A. Assadzadeh, James Flanagan, Axel Schumacher, Sun-Chong Wang, A. Petronis (2008)
Epigenomic profiling reveals DNA-methylation changes associated with major psychosis.American journal of human genetics, 82 3
D. Koestler, Michele Avissar-Whiting, E. Houseman, M. Karagas, C. Marsit (2013)
Differential DNA Methylation in Umbilical Cord Blood of Infants Exposed to Low Levels of Arsenic in UteroEnvironmental Health Perspectives, 121
D. Koestler, C. Marsit, B. Christensen, William Accomando, Scott Langevin, E. Houseman, H. Nelson, M. Karagas, J. Wiencke, K. Kelsey (2012)
Peripheral Blood Immune Cell Methylation Profiles Are Associated with Nonhematopoietic CancersCancer Epidemiology, Biomarkers & Prevention, 21
U. Baron, Ivana Turbachova, Alexander Hellwag, F. Eckhardt, K. Berlin, U. Hoffmüller, Paul Gardina, S. Olek (2006)
DNA Methylation Analysis as a Tool for Cell TypingEpigenetics, 1
L. Lam, E. Emberly, Hunter Fraser, Sarah Neumann, E. Chen, G. Miller, M. Kobor (2012)
Factors underlying variable DNA methylation in a human community cohortProceedings of the National Academy of Sciences, 109
Fu-Mei Chung, J. Tsai, Dao‐Ming Chang, S. Shin, Yau-Jiunn Lee (2005)
Peripheral total and differential leukocyte count in diabetic nephropathy: the relationship of plasma leptin to leukocytosis.Diabetes care, 28 7
J. Sehouli, C. Loddenkemper, T. Cornu, T. Schwachula, U. Hoffmüller, A. Grützkau, P. Lohneis, T. Dickhaus, J. Gröne, M. Kruschewski, A. Mustea, Ivana Turbachova, U. Baron, S. Olek (2011)
Epigenetic quantification of tumor-infiltrating T-lymphocytesEpigenetics, 6
W. Johnson, Cheng Li, Ariel Rabinovic (2007)
Adjusting batch effects in microarray expression data using empirical Bayes methods.Biostatistics, 8 1
Lovisa Reinius, N. Acevedo, M. Joerink, G. Pershagen, S. Dahlén, D. Greco, C. Söderhäll, A. Scheynius, J. Kere (2012)
Differential DNA Methylation in Purified Human Blood Cells: Implications for Cell Lineage and Studies on Disease SusceptibilityPLoS ONE, 7
J. Leek, John Storey (2007)
Capturing Heterogeneity in Gene Expression Studies by “ Surrogate Variable Analysis ”
Liang Wang, J. Aakre, Ruoxiang Jiang, R. Marks, Yanhong Wu, Jun Chen, S. Thibodeau, V. Pankratz, Ping Yang (2010)
Methylation Markers for Small Cell Lung Cancer in Peripheral Blood Leukocyte DNAJournal of Thoracic Oncology, 5
Manish Thapar, J. Covault, V. Hesselbrock, H. Bonkovsky (2012)
DNA methylation patterns in alcoholics and family controls.World journal of gastrointestinal oncology, 4 6
B. Adalsteinsson, Haukur Gudnason, T. Aspelund, T. Harris, L. Launer, G. Eiriksdottir, A. Smith, V. Gudnason (2012)
Heterogeneity in White Blood Cells Has Potential to Confound DNA Methylation MeasurementsPLoS ONE, 7
K. Pedersen, W. Bamlet, A. Oberg, M. Andrade, Martha Matsumoto, H. Tang, S. Thibodeau, G. Petersen, Liang Wang (2011)
Leukocyte DNA Methylation Signature Differentiates Pancreatic Cancer Patients from Healthy ControlsPLoS ONE, 6
J. Bryk, P. Popovic, M. Zenati, V. Munera, John Pribis, J. Ochoa (2009)
Nature of myeloid cells expressing arginase 1 in peripheral blood after trauma.The Journal of trauma, 68 4
P. Laird (2010)
Principles and challenges of genome-wide DNA methylation analysisNature Reviews Genetics, 11
Zhifu Sun, H. Chai, Yanhong Wu, W. White, K. Donkena, C. Klein, V. Garovic, T. Therneau, J. Kocher (2011)
Batch effect correction for genome-wide methylation data with Illumina Infinium platformBMC Medical Genomics, 4
Xiao-hua Zhu, Jun Liang, Feng Li, Yongsheng Yang, L. Xiang, Jinhua Xu (2011)
Analysis of associations between the patterns of global DNA hypomethylation and expression of DNA methyltransferase in patients with systemic lupus erythematosusInternational Journal of Dermatology, 50
The potential influence of underlying differences in relative leukocyte distributions in studies involving blood-based profiling of DNA methylation is well recognized and has prompted development of a set of statistical methods for inferring changes in the distribution of white blood cells using DNA methylation signatures. However, the extent to which this methodology can accurately predict cell-type proportions based on blood-derived DNA methylation data in a large-scale epigenome-wide association study (EWAS) has yet to be examined. We used publicly available data deposited in the Gene Expression Omnibus (GEO) database (accession number GSE37008), which consisted of both blood-derived epigenome-wide DNA methylation data assayed using the Illumina Infinium HumanMethylation27 BeadArray and complete blood cell (CBC) counts among a community cohort of 94 non-diseased individuals. Constrained projection (CP) was used to obtain predictions of the proportions of lymphocytes, monocytes and granulocytes for each of the study samples based on their DNA methylation signatures. Our findings demonstrated high consistency between the average CBC-derived and predicted percentage of monocytes and lymphocytes (17.9% and 17.6% for monocytes and 82.1% and 81.4% for lymphocytes), with root mean squared error (rMSE) of 5% and 6%, for monocytes and lymphocytes, respectively. Similarly, there was moderate-high correlation between the CP-predicted and CBC-derived percentages of monocytes and lymphocytes (0.60 and 0.61, respectively), and these results were robust to the number of leukocyte differentially methylated regions (L-DMRs) used for CP prediction. These results serve as further validation of the CP approach and highlight the promise of this technique for EWAS where DNA methylation is profiled using whole-blood genomic DNA.
Epigenetics – Taylor & Francis
Published: Aug 1, 2013
Keywords: DNA methylation; whole-blood; cell mixture analysis; mixture deconvolution; leukocytes
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.