Access the full text.
Sign up today, get DeepDyve free for 14 days.
E. Kokko, P. Pietikäinen, J. Koivunen, J. Seppälä (2001)
Long‐chain‐branched polyethene by the copolymerization of ethene and nonconjugated α,ω‐dienesJournal of Polymer Science Part A, 39
H. Münstedt, S. Kurzbeck, Lothar Egersdörfer (1998)
Influence of molecular structure on rheological properties of polyethylenesRheologica Acta, 37
F. Stadler, C. Piel, K. Klimke, J. Kaschta, M. Parkinson, M. Wilhelm, W. Kaminsky, H. Münstedt (2006)
Influence of Type and Content of Various Comonomers on Long-Chain Branching of Ethene/α-Olefin CopolymersMacromolecules, 39
D. Auhl, Jorge Ramírez, A. Likhtman, P. Chambon, C. Fernyhough (2008)
Linear and nonlinear shear flow behavior of monodisperse polyisoprene melts with a large range of molecular weightsJournal of Rheology, 52
J. Montfort, G. Marin, P. Monge (1986)
Molecular weight distribution dependence of the viscoelastic properties of linear polymers: the coupling of reptation and tube-renewal effectsMacromolecules, 19
N. Nemoto (1970)
Viscoelastic Properties of Narrow-Distribution Polymers. II. Tensile Creep Studies of PolystyrenePolymer Journal, 1
F. Stadler, C. Piel, J. Kaschta, S. Rulhoff, W. Kaminsky, H. Münstedt (2006)
Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersityRheologica Acta, 45
C. Piel, P. Starck, J. Seppälä, W. Kaminsky (2006)
Thermal and mechanical analysis of metallocene‐catalyzed ethene–α‐olefin copolymers: The influence of the length and number of the crystallizing side chainsJournal of Polymer Science Part A, 44
W. Kaminsky, C. Piel, Katrin Scharlach (2005)
Polymerization of Ethene and Longer Chained Olefins by Metallocene CatalysisMacromolecular Symposia, 226
C. Gabriel, H. Münstedt (2002)
Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shearRheologica Acta, 41
A. Malmberg, C. Gabriel, T. Steffl, H. Münstedt, B. Löfgren (2002)
Long-Chain Branching in Metallocene-Catalyzed Polyethylenes Investigated by Low Oscillatory Shear and Uniaxial Extensional RheometryMacromolecules, 35
R. Shroff, H. Mavridis (1999)
Long-Chain-Branching Index for Essentially Linear PolyethylenesMacromolecules, 32
J. Vega, A. Santamaría, A. Muñoz-Escalona, P. Lafuente (1998)
Small-Amplitude Oscillatory Shear Flow Measurements as a Tool To Detect Very Low Amounts of Long Chain Branching in PolyethylenesMacromolecules, 31
D. Lohse, S. Milner, L. Fetters, M. Xenidou, N. Hadjichristidis, R. Mendelson, C. García-Franco, M. Lyon (2002)
Well-Defined, Model Long Chain Branched Polyethylene. 2. Melt Rheological BehaviorMacromolecules, 35
P. Wood-Adams, J. Dealy, A. Degroot, O. Redwine (2000)
Effect of Molecular Structure on the Linear Viscoelastic Behavior of PolyethyleneMacromolecules, 33
M. Aguilar, J. Vega, E. Sanz, J. Martínez-Salazar (2001)
New aspects on the rheological behaviour of metallocene catalysed polyethylenesPolymer, 42
M. Kraft (1996)
Untersuchungen zur scherinduzierten rheologischen Anisotropie von verschiedenen Polyethylen-Schmelzen
D. Auhl, J. Stange, H. Münstedt, B. Krause, D. Voigt, A. Lederer, U. Lappan, K. Lunkwitz (2004)
Long-Chain Branched Polypropylenes by Electron Beam Irradiation and Their Rheological PropertiesMacromolecules, 37
F. Stadler, J. Kaschta, H. Münstedt (2005)
Dynamic-mechanical behavior of polyethylenes and ethene-/α-olefin-copolymers. Part I. α′-RelaxationPolymer, 46
J. Vega, A. Muñoz-Escalona, A. Santamaría, M. Muñoz, P. Lafuente (1996)
Comparison of the Rheological Properties of Metallocene-Catalyzed and Conventional High-Density PolyethylenesMacromolecules, 29
S. Orbon, D. Plazek (1979)
Recoverable compliance of a series of bimodal molecular weight blends of polystyreneJournal of Polymer Science Part B, 17
H. Münstedt, D. Auhl (2005)
Rheological measuring techniques and their relevance for the molecular characterization of polymers, 128
L. Fetters, A. Lohse, S. Milner, W. Graessley (1999)
Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular WeightsMacromolecules, 32
J. Janzen, R. Colby (1999)
DIAGNOSING LONG-CHAIN BRANCHING IN POLYETHYLENESJournal of Molecular Structure, 485
H. Münstedt (1980)
Dependence of the Elongational Behavior of Polystyrene Melts on Molecular Weight and Molecular Weight DistributionJournal of Rheology, 24
G. Link, F. Schwarzl (1985)
Measuring device for precise evaluation of torsional creep and recovery dataRheologica Acta, 24
C. Gabriel, E. Kokko, B. Löfgren, J. Seppälä, H. Münstedt (2002)
Analytical and rheological characterization of long-chain branched metallocene-catalyzed ethylene homopolymersPolymer, 43
F. Stadler, C. Piel, W. Kaminsky, H. Münstedt (2006)
Rheological Characterization of Long‐chain Branched Polyethylenes and Comparison with Classical Analytical MethodsMacromolecular Symposia, 236
F. Stadler, C. Gabriel, H. Münstedt (2007)
Influence of Short‐Chain Branching of Polyethylenes on the Temperature Dependence of Rheological Properties in ShearMacromolecular Chemistry and Physics, 208
C. Gabriel, H. Münstedt (1999)
Creep recovery behavior of metallocene linear low-density polyethylenesRheologica Acta, 38
Claus Gabriel, J. Kaschta (1998)
Comparison of different shear rheometers with regard to creep and creep recovery measurementsRheologica Acta, 37
L. Utracki, B. Schlund (1987)
Linear low density polyethylenes and their blends: Part 2. Shear flow of LLDPE'sPolymer Engineering and Science, 27
C. García-Franco, B. Harrington, D. Lohse (2005)
On the rheology of ethylene-octene copolymersRheologica Acta, 44
W. Graessley, S. Edwards (1981)
Entanglement interactions in polymers and the chain contour concentrationPolymer, 22
C. Piel, F. Stadler, J. Kaschta, S. Rulhoff, H. Münstedt, W. Kaminsky (2006)
Structure‐Property Relationships of Linear and Long‐Chain Branched Metallocene High‐Density Polyethylenes Characterized by Shear Rheology and SEC‐MALLSMacromolecular Chemistry and Physics, 207
D. Plazek, V. O'rourke (1971)
Viscoelastic behavior of low molecular weight polystyreneJournal of Polymer Science Part A-2: Polymer Physics, 9
J. Carella, W. Graessley, L. Fetters (1984)
Effects of chain microstructure on the viscoelastic properties of linear polymer melts: polybutadienes and hydrogenated polybutadienesMacromolecules, 17
A. Malmberg, J. Liimatta, A. Lehtinen, B. Löfgren (1999)
Characteristics of long chain branching in ethene polymerization with single site catalystsMacromolecules, 32
L. Fetters, D. Lohse, C. García-Franco, P. Brant, D. Richter (2002)
Prediction of Melt State Poly(α-olefin) Rheological Properties: The Unsuspected Role of the Average Molecular Weight per Backbone BondMacromolecules, 35
K. Klimke, M. Parkinson, C. Piel, W. Kaminsky, H. Spiess, M. Wilhelm (2006)
Optimisation and application of polyolefin branch quantification by melt-state C-13 NMR spectroscopyMacromolecular Chemistry and Physics, 207
Several linear ethene∕ α -olefin copolymers with butene, hexene, octene, dodecene, octadecene, and hexacosene as comonomers were characterized in linear-viscoelastic shear flow. Creep and creep recovery measurements were used to obtain the zero shear-rate viscosity η 0 and the steady-state elastic recovery compliance J e 0 . The correlation between the zero shear-rate viscosity and the weight average molar mass η 0 ( M w ) established for metallocene catalyzed high density polyethylene ( m HDPE ) was found to be obeyed by all samples containing comonomer contents up to 29 wt % . For the linear steady-state elastic compliance J e 0 an increase with growing molar mass M w or comonomer content w c was observed.
Journal of Rheology – The Society of Rheology
Published: May 1, 2008
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.