Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Fibronectin organization under and near cells

Fibronectin organization under and near cells Polymerization of soluble fibronectin molecules results in fibres that are visible as networks using fluorescently labelled fibronectin protomers or by antibody labelling. Displacement of fibres composed of modified protomers in living cells provides information regarding matrix structure, organization, and movement. A static analysis of fibronectin structures and patterns of organization provide insight into their reorganization during adhesion and motility. Confocal microscopy and atomic force microscopy (AFM) reveal fibronectin-containing networks aligned in arrays perpendicular to the retracting cell edge and in apparently disordered networks of fibres under the cell. The change in patterns suggests a reorganization of fibronectin from disordered arrays used for adhesion into ordered arrays during movement of the cell. Comparison of confocal images with corresponding AFM images confirms that the fibres left on the surface as the cell moves away do contain fibronectin. The orientation of these fibres relative to the tail (uropod) and the receding edges of the cell leads us to propose that cells generate a force on the fibres that exceeds the adhesion force of the fibres to the surface causing them to pull fibronectin fibres into straight arrays. However, when the fibres are parallel to the direction of pull, the fibres remain attached to the surface. The data supports the hypothesis that disorganized, linear fibres are the product of Fn polymerization induced by the cell beneath it and serve to adhere the cell to the substrate as the cell spreads, whereas arrays of fibres found outside the cell are formed as existing fibrils and reorganize during cell motility. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Biophysics Journal Springer Journals

Fibronectin organization under and near cells

Loading next page...
 
/lp/springer-journals/fibronectin-organization-under-and-near-cells-QF9mTIuZB0

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2006 by EBSA
Subject
Life Sciences; Biochemistry, general; Biological and Medical Physics, Biophysics; Cell Biology; Neurobiology; Membrane Biology; Nanotechnology
ISSN
0175-7571
eISSN
1432-1017
DOI
10.1007/s00249-006-0081-7
pmid
16944124
Publisher site
See Article on Publisher Site

Abstract

Polymerization of soluble fibronectin molecules results in fibres that are visible as networks using fluorescently labelled fibronectin protomers or by antibody labelling. Displacement of fibres composed of modified protomers in living cells provides information regarding matrix structure, organization, and movement. A static analysis of fibronectin structures and patterns of organization provide insight into their reorganization during adhesion and motility. Confocal microscopy and atomic force microscopy (AFM) reveal fibronectin-containing networks aligned in arrays perpendicular to the retracting cell edge and in apparently disordered networks of fibres under the cell. The change in patterns suggests a reorganization of fibronectin from disordered arrays used for adhesion into ordered arrays during movement of the cell. Comparison of confocal images with corresponding AFM images confirms that the fibres left on the surface as the cell moves away do contain fibronectin. The orientation of these fibres relative to the tail (uropod) and the receding edges of the cell leads us to propose that cells generate a force on the fibres that exceeds the adhesion force of the fibres to the surface causing them to pull fibronectin fibres into straight arrays. However, when the fibres are parallel to the direction of pull, the fibres remain attached to the surface. The data supports the hypothesis that disorganized, linear fibres are the product of Fn polymerization induced by the cell beneath it and serve to adhere the cell to the substrate as the cell spreads, whereas arrays of fibres found outside the cell are formed as existing fibrils and reorganize during cell motility.

Journal

European Biophysics JournalSpringer Journals

Published: Aug 31, 2006

There are no references for this article.