Access the full text.
Sign up today, get DeepDyve free for 14 days.
F. Li, J. O. Brunkard, B. Baker (2022)
LncRNA Gets Into the Balancing Act, 30
M. Stompor, K. Dancewicz, B. Gabryś, M. Anioł (2015)
Insect Antifeedant Potential of Xanthohumol, Isoxanthohumol, and Their Derivatives, 63
Y. Wu, Y. Li, W. Chu (2023)
Expression and Functional Characterization of Odorant‐Binding Protein 2 in the Predatory Mite Neoseiulus barkeri, 30
C. Ma, R. Li, Y. Sun (2023)
ZmMYC2s Play Important Roles in Maize Responses to Simulated Herbivory and Jasmonate, 65
G. A. Thompson, F. L. Goggin (2006)
Transcriptomics and Functional Genomics of Plant Defence Induction by Phloem Feeding Insects, 57
V. H. Argandoña, J. G. Luza, H. M. Niemeyer, L. J. Corcuera (1980)
Role of Hydroxamic Acids in the Resistance of Cereals to Aphids, 19
X. Moreira, C. S. Nell, A. Katsanis, S. Rasmann, K. A. Mooney (2018)
Herbivore Specificity and the Chemical Basis of Plant‐Plant Communication in Baccharis salicifolia (Asteraceae), 220
N. Dudareva, A. Klempien, J. K. Muhlemann, I. Kaplan (2013)
Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds, 198
S. Sattar, M. T. Martinez, A. F. Ruiz, W. Hanna‐Rose, G. A. Thompson (2019)
Nicotinamide Inhibits Aphid Fecundity and Impacts Survival, 9
E. Shen, T. Zhao, Q. H. Zhu (2024)
Are Mirnas Applicable for Balancing Crop Growth and Defense Trade‐Off?, 243
Z. Badra, S. Larsson Herrera, L. Cappellin (2021)
Species‐Specific Induction of Plant Volatiles by Two Aphid Species in Apple: Real Time Measurement of Plant Emission and Attraction of Lacewings in the Wind Tunnel, 47
X. Liu, Z. Kang, X. Yu, F. Li, T. Liu, Q. Li (2020)
Role of Trp Channels and HSPs in Thermal Stress Response in the Aphid Parasitoid Aphelinus asychis (Hymenoptera: Aphelinidae), 19
J. L. Chen, Y. Q. Wu, Y. Zhang (2023)
Contribution of Academician Guo Yuyuan in the Prediction and Management of Wheat Insect Pests, 49
J. Jin, M. Zhao, T. Jing (2023)
Volatile Compound‐Mediated Plant‐Plant Interactions Under Stress With the Tea Plant as a Model, 10
D. Piesik, D. Pańka, K. J. Delaney, A. Skoczek, R. Lamparski, D. K. Weaver (2011)
Cereal Crop Volatile Organic Compound Induction After Mechanical Injury, Beetle Herbivory (Oulema Spp.), or Fungal Infection (Fusarium Spp.), 168
G. Glauser, G. Marti, N. Villard (2011)
Induction and Detoxification of Maize 1,4‐benzoxazin‐3‐ones by Insect Herbivores, 68
T. Nomura, A. Ishihara, H. Imaishi, H. Ohkawa, T. R. Endo, H. Iwamura (2003)
Rearrangement of the Genes for the Biosynthesis of Benzoxazinones in the Evolution of Triticeae Species, 217
Q. Gong, Y. Wang, L. He (2023)
Molecular Basis of Methyl‐Salicylate‐Mediated Plant Airborne Defence, 622
A. K. Maurya, L. Pazouki, C. J. Frost (2022)
Priming Seeds With Indole and (Z)‐3‐hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth, 48
M. Ameye, K. Audenaert, N. De Zutter (2015)
Priming of Wheat With the Green Leaf Volatile Z‐3‐hexenyl Acetate Enhances Defense Against Fusarium Graminearum but Boosts Deoxynivalenol Production, 167
M. Erb, S. Meldau, G. A. Howe (2012)
Role of Phytohormones in Insect‐Specific Plant Reactions, 17
J. Jackowski, M. Hurej, E. Rój, J. Popłoński, L. Kośny, E. Huszcza (2015)
Antifeedant Activity of Xanthohumol and Supercritical Carbon Dioxide Extract of Spent Hops Against Stored Product Pests, 105
J. Wu, I. T. Baldwin (2010)
New Insights Into Plant Responses to the Attack From Insect Herbivores, 44
L. N. Meihls, V. Handrick, G. Glauser (2013)
Natural Variation in Maize Aphid Resistance Is Associated With 2,4‐Dihydroxy‐7‐Methoxy‐1,4‐Benzoxazin‐3‐One Glucoside Methyltransferase Activity, 25
C. Yi, D. Teng, J. Xie (2023)
Volatiles from Cotton Aphid (Aphis gossypii) Infested Plants Attract the Natural Enemy Hippodamia variegata, 14
Y. Zhang, Y. Fu, J. Fan, Q. Li, F. Francis, J. Chen (2019)
Comparative Transcriptome and Histological Analyses of Wheat in Response to Phytotoxic Aphid Schizaphis graminum and Non‐Phytotoxic Aphid Sitobion Avenae Feeding, 19
L. J. Corcuera, V. H. Argandoña, H. M. Niemeyer (1982)
Chemistry and Biology of Hydroxamic Acids
Z. W. Kang, F. H. Liu, Z. F. Zhang, H. G. Tian, T. X. Liu (2018)
Volatile Β‐Ocimene Can Regulate Developmental Performance of Peach Aphid Myzus persicae Through Activation of Defense Responses in Chinese Cabbage Brassica pekinensis, 9
H. N. ElSohly, A. S. Joshi, A. C. Nimrod, L. A. Walker, A. M. Clark (2001)
Antifungal Chalcones From Maclura tinctoria, 67
M. Wang, L. Lin, J. J. Lu, X. Chen (2021)
Pharmacological Review of Isobavachalcone, a Naturally Occurring Chalcone, 165
P. C. Ceresini, V. L. Castroagudín, F. Á. Rodrigues (2018)
Wheat Blast: Past, Present, and Future, 56
Y. Song, H. Cui, W. Guo (2024)
Endophytic Fungi Improved Wheat Resistance to Rhopalosiphum Padi by Decreasing Its Feeding Efficiency and Population Fitness, 270
D. Maag, A. Köhler, C. A. M. Robert (2016)
Highly Localized and Persistent Induction of Bx1‐Dependent Herbivore Resistance Factors in Maize, 88
Q. Xu, S. Hatt, T. Lopes (2018)
A Push–Pull Strategy to Control Aphids Combines Intercropping With Semiochemical Releases, 91
C. Zhang, J. Li, S. Li (2021)
ZmMPK6 and Ethylene Signalling Negatively Regulate the Accumulation of Anti‐Insect Metabolites Dimboa and Dimboa‐Glc in Maize Inbred Line A188, 229
W. S. Leal (2013)
Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes, 58
M. Wang, C. Rodriguez‐Saona, A. Lavoir (2024)
Leveraging Air‐Borne Voc‐Mediated Plant Defense Priming to Optimize Integrated Pest Management, 97
N. F. Brito, D. S. Oliveira, T. C. Santos, M. F. Moreira, A. C. A. Melo (2020)
Current and Potential Biotechnological Applications of Odorant‐Binding Proteins, 104
Z. W. Kang, M. Zhang, H. H. Cao, S. S. Guo, F. H. Liu, T. X. Liu (2022)
Facultative Endosymbiont Serratia symbiotica Inhibits the Apterization of Pea Aphid to Enhance Its Spread, 10
X. Hao, S. Wang, Y. Fu (2024)
The WRKY46‐MYC2 Module Plays a Critical Role in E‐2‐Hexenal‐Induced Anti‐Herbivore Responses by Promoting Flavonoid Accumulation, 5
S. Ahmad, N. Veyrat, R. Gordon‐Weeks (2011)
Benzoxazinoid Metabolites Regulate Innate Immunity Against Aphids and Fungi in Maize, 157
E. Rowen, M. Gutensohn, N. Dudareva, I. Kaplan (2017)
Carnivore Attractant or Plant Elicitor? Multifunctional Roles of Methyl Salicylate Lures in Tomato Defense, 43
F. C. Wouters, B. Blanchette, J. Gershenzon, D. G. Vassão (2016)
Plant Defense and Herbivore Counter‐Defense: Benzoxazinoids and Insect Herbivores, 15
J. Qi, S. Malook, G. Shen (2018)
Current Understanding of Maize and Rice Defense Against Insect Herbivores, 40
Z. K. Yang, C. Qu, S. X. Pan (2023)
Aphid‐Repellent, Ladybug‐Attraction Activities, and Binding Mechanism of Methyl Salicylate Derivatives Containing Geraniol Moiety, 79
E. M. Russavage, J. A. Hewlett, J. M. Grunseich (2024)
Aphid‐Induced Volatiles and Subsequent Attraction of Natural Enemies Varies Among Sorghum Cultivars, 50
V. Ninkovic, R. Glinwood, A. G. Ünlü, S. Ganji, C. R. Unelius (2021)
Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid Rhopalosiphum padi, 12
R. Shavit, Z. S. Batyrshina, B. Yaakov, M. Florean, T. G. Köllner, V. Tzin (2022)
The Wheat Dioxygenase BX6 Is Involved in the Formation of Benzoxazinoids in Planta and Contributes to Plant Defense Against Insect Herbivores, 316
L. Pingault, S. Varsani, N. Palmer (2021)
Transcriptomic and Volatile Signatures Associated With Maize Defense Against Corn Leaf Aphid, 21
J. Liu, X. Zhao, Y. Zhan, K. Wang, F. Francis, Y. Liu (2021)
New Slow Release Mixture of (E)‐β‐farnesene With Methyl Salicylate to Enhance Aphid Biocontrol Efficacy in Wheat Ecosystem, 77
F. Liu, Z. Kang, X. Tan, Y. Fan, H. Tian, T. Liu (2020)
Physiology and Defense Responses of Wheat to the Infestation of Different Cereal Aphids, 19
E. Petrussa, E. Braidot, M. Zancani (2013)
Plant Flavonoids‐‐Biosynthesis, Transport and Involvement in Stress Responses, 14
Y. Liu, C. Hu, H. Ni, J. Sun (2001)
Effects of Volatiles From Different Trophic Level on Foraging Behavior of Aphidius Avenae, 12
Q. Su, F. Yang, Q. Zhang (2020)
Defence Priming in Tomato by the Green Leaf Volatile (Z)‐3‐hexenol Reduces Whitefly Transmission of a Plant Virus, 43
X. Jiang, J. Jiang, M. Yu (2023)
Functional Analysis of Odorant‐Binding Proteins for the Parasitic Host Location to Implicate Convergent Evolution Between the Grain Aphid and Its Parasitoid Aphidius gifuensis, 226
M. Sue, C. Nakamura, T. Nomura (2011)
Dispersed Benzoxazinone Gene Cluster: Molecular Characterization and Chromosomal Localization of Glucosyltransferase and Glucosidase Genes in Wheat and Rye, 157
M. Erb (2018)
Volatiles as Inducers and Suppressors of Plant Defense and Immunity‐Origins, Specificity, Perception and Signaling, 44
C. Qu, Z. Yang, S. Wang (2022)
Binding Affinity Characterization of Four Antennae‐Enriched Odorant‐Binding Proteins From Harmonia axyridis (Coleoptera: Coccinellidae), 13
Y. Fan, J. Bai, S. Wu (2024)
The RALF2‐FERONIA‐MYB63 Module Orchestrates Growth and Defense in Tomato Roots, 243
J. Wang, J. Wei, T. Yi (2023)
A Green Leaf Volatile, (Z)‐3‐Hexenyl‐Acetate, Mediates Differential Oviposition by Spodoptera Frugiperda on Maize and Rice, 21
J. K. Konopka, D. Task, A. Afify (2021)
Olfaction in Anopheles Mosquitoes, 46
C. Chen, Y. Wu, J. Li (2023)
TBtools‐II: A ‘One for All, All for One’ Bioinformatics Platform for Biological Big‐Data Mining, 16
M. C. McDonald, P. S. Solomon (2018)
Just the Surface: Advances in the Discovery and Characterization of Necrotrophic Wheat Effectors, 46
V. Handrick, C. A. Robert, K. R. Ahern (2016)
Biosynthesis of 8‐O‐Methylated Benzoxazinoid Defense Compounds in Maize, 28
Z. X. Li, M. Q. Ji, C. Zhang (2022)
The Influence of Host Aphids on the Performance of Aphelinus asychis, 13
J. L. Feng, J. Zhang, J. Yang (2021)
Exogenous Salicylic Acid Improves Resistance of Aphid‐Susceptible Wheat to the Grain Aphid, Sitobion Avenae (F.) (Hemiptera: Aphididae), 111
C. J. Frost, H. M. Appel, J. E. Carlson, C. M. De Moraes, M. C. Mescher, J. C. Schultz (2007)
Within‐Plant Signalling via Volatiles Overcomes Vascular Constraints on Systemic Signalling and Primes Responses Against Herbivores, 10
T. Nomura, A. Ishihara, H. Imaishi, T. Endo, H. Ohkawa, H. Iwamura (2002)
Molecular Characterization and Chromosomal Localization of Cytochrome P450 Genes Involved in the Biosynthesis of Cyclic Hydroxamic Acids in Hexaploid Wheat, 267
Q. Ahmed, M. Agarwal, R. Alobaidi, H. Zhang, Y. Ren (2022)
Response of Aphid Parasitoids to Volatile Organic Compounds From Undamaged and Infested Brassica oleracea With Myzus persicae, 27
J. Engelberth, M. Engelberth (2019)
The Costs of Green Leaf Volatile‐Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory, 8
A. Richter, A. F. Powell, M. Mirzaei (2021)
Indole‐3‐glycerolphosphate Synthase, a Branchpoint for the Biosynthesis of Tryptophan, Indole, and Benzoxazinoids in Maize, 106
M. Frey, P. Chomet, E. Glawischnig (1997)
Analysis of a Chemical Plant Defense Mechanism in Grasses, 277
L. Gao, G. Shen, L. Zhang (2019)
An Efficient System Composed of Maize Protoplast Transfection and HPLC‐MS for Studying the Biosynthesis and Regulation of Maize Benzoxazinoids, 15
V. Tzin, Y. Hojo, S. R. Strickler (2017)
Rapid Defense Responses in Maize Leaves Induced by Spodoptera Exigua Caterpillar Feeding, 68
Z. S. Batyrshina, R. Shavit, B. Yaakov, S. Bocobza, V. Tzin (2022)
The Transcription Factor TaMYB31 Regulates the Benzoxazinoid Biosynthetic Pathway in Wheat, 73
J. Ali, D. Wei, M. Mahamood (2023)
Exogenous Application of Methyl Salicylate Induces Defence in Brassica Against Peach Potato Aphid Myzus persicae, 12
Y. Lin, M. Hussain, P. B. Avery, M. Qasim, D. Fang, L. Wang (2016)
Volatiles From Plants Induced by Multiple Aphid Attacks Promote Conidial Performance of Lecanicillium lecanii, 11
N. Liu, Y. Xu, Q. Li (2022)
A Lncrna Fine‐Tunes Salicylic Acid Biosynthesis to Balance Plant Immunity and Growth, 30
Y. Zhang, Y. Wang, T. Liu (2023)
GhMYC1374 Regulates the Cotton Defense Response to Cotton Aphids by Mediating the Production of Flavonoids and Free Gossypol, 205
W. Desmedt, M. Ameye, O. Filipe (2023)
Molecular Analysis of Broad‐Spectrum Induced Resistance in Rice by the Green Leaf Volatile Z‐3‐Hexenyl Acetate, 74
M. Schettino, D. A. Grasso, B. T. Weldegergis (2017)
Response of a Predatory Ant to Volatiles Emitted by Aphid‐ and Caterpillar‐Infested Cucumber and Potato Plants, 43
M. Staudt, B. Jackson, H. El‐Aouni (2010)
Volatile Organic Compound Emissions Induced by the Aphid Myzus persicae Differ Among Resistant and Susceptible Peach Cultivars and a Wild Relative, 30
Z. Hu, X. Zhong, H. Zhang (2023)
GhMYB18 Confers Aphis gossypii Glover Resistance Through Regulating the Synthesis of Salicylic Acid and Flavonoids in Cotton Plants, 42
J. Zhu, K. C. Park (2005)
Methyl Salicylate, a Soybean Aphid‐Induced Plant Volatile Attractive to the Predator Coccinella septempunctata, 31
N. Wang, C. Tang, X. Fan (2022)
Inactivation of a Wheat Protein Kinase Gene Confers Broad‐Spectrum Resistance to Rust Fungi, 185
R. Benton (2022)
Drosophila olfaction: Past, Present and Future, 289
T. C. J. Turlings, M. Erb (2018)
Tritrophic Interactions Mediated by Herbivore Induced Plant Volatiles: Mechanisms, Ecological Relevance, and Application Potential, 63
Wheat (Triticum aestivum L.) is one of the most important staple crops all over the world. Its productivity is adversely affected by aphid infestation. Plant volatiles play a critical role in plant communication, inducing direct and indirect defenses against insect pests. However, little is known about the priming mechanism of key volatiles in wheat. To determine whether and how plant volatile induced defense priming in wheat against the grain aphid Sitobion avenae, a combination of insect bioassays, phytohormone and defense metabolite quantification, and transcriptome analyses were performed using an important aphid damage‐induced plant volatile, methyl salicylate (MeSA). MeSA treatment primed wheat for enhanced accumulation of salicylic acid, flavonoid and benzoxazinoids (BXs), and increased resistance to S. avenae and attractiveness to an aphid parasitoid Aphelinus asychis. Supplementation with a BX (2,4‐dihydroxy‐7‐methoxy‐2H‐1,4‐benzoxazin‐3(4H)‐one) and two flavonoids (xanthohumol and isobavachalcone) in artificial diet impaired the survival, development and fecundity of S. avenae. Moreover, MeSA treatment induced wheat volatile emission especially MeSA. Functional investigation of odorant‐binding proteins (OBPs) in A. asychis revealed that AasyOBP4 is responsible for the recognition of MeSA. Taken together, our results provide insights into the molecular mechanism of MeSA‐mediated defense in wheat and propose MeSA as a phytoprotectant for crop protection and sustainable agriculture.
Plant Cell & Environment – Wiley
Published: Dec 30, 2024
Keywords: defense metabolites; defense priming; methyl salicylate; odorant‐binding proteins
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.