Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Geiszt, K. Lekstrom, J. Witta, T. Leto (2003)
Proteins Homologous to p47phox and p67phox Support Superoxide Production by NAD(P)H Oxidase 1 in Colon Epithelial Cells*Journal of Biological Chemistry, 278
D. Diekmann, A. Abo, C. Johnston, A. Segal, A. Hall (1994)
Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity.Science, 265 5171
Q. Hu, Zu-Xi Yu, V. Ferrans, K. Takeda, K. Irani, R. Ziegelstein (2002)
Critical Role of NADPH Oxidase-derived Reactive Oxygen Species in Generating Ca2+ Oscillations in Human Aortic Endothelial Cells Stimulated by Histamine*The Journal of Biological Chemistry, 277
R. Touyz, Xin Chen, F. Tabet, Guoying Yao, G. He, M. Quinn, P. Pagano, E. Schiffrin (2002)
Expression of a Functionally Active gp91phox-Containing Neutrophil-Type NAD(P)H Oxidase in Smooth Muscle Cells From Human Resistance Arteries: Regulation by Angiotensin IICirculation Research: Journal of the American Heart Association, 90
A. Doanes, K. Irani, P. Goldschmidt-Clermont, T. Finkel (1998)
A requirement for rac1 in the PDGF‐stimulated migration of fibroblasts and vascular smooth cellsIUBMB Life, 45
K. Szöcs, B. Lassègue, D. Sorescu, L. Hilenski, Liisa Valppu, T. Couse, J. Wilcox, M. Quinn, David Lambeth, K. Griendling (2002)
Upregulation of Nox‐Based NAD(P)H Oxidases in Restenosis After Carotid InjuryArteriosclerosis, Thrombosis, and Vascular Biology, 22
Akira Nakanishi, Shinobu Imajoh-Ohmi, T. Fujinawa, H. Kikuchi, Shiro Kanegasaki (1992)
Direct evidence for interaction between COOH-terminal regions of cytochrome b558 subunits and cytosolic 47-kDa protein during activation of an O(2-)-generating system in neutrophils.The Journal of biological chemistry, 267 27
R. Touyz, Guoying Yao, E. Schiffrin (2003)
c-Src Induces Phosphorylation and Translocation of p47phox: Role in Superoxide Generation by Angiotensin II in Human Vascular Smooth Muscle CellsArteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 23
H. Sohn, U. Raff, A. Hoffmann, T. Gloe, K. Heermeier, J. Galle, U. Pohl (2000)
Differential role of angiotensin II receptor subtypes on endothelial superoxide formationBritish Journal of Pharmacology, 131
R. Oeckler, P. Kaminski, M. Wolin (2003)
Stretch Enhances Contraction of Bovine Coronary Arteries via an NAD(P)H Oxidase–Mediated Activation of the Extracellular Signal–Regulated Kinase Mitogen-Activated Protein Kinase CascadeCirculation Research: Journal of the American Heart Association, 92
L. Cantley (2002)
The phosphoinositide 3-kinase pathway.Science, 296 5573
T. Goldkorn, Naomi Balaban, Karen Matsukuma, Vathary Chea, Rick Gould, Jerold Last, Chris Chan, Christine Chavez (1998)
EGF-Receptor phosphorylation and signaling are targeted by H2O2 redox stress.American journal of respiratory cell and molecular biology, 19 5
R. Ambasta, Pravir Kumar, K. Griendling, H. Schmidt, R. Busse, R. Brandes (2004)
Direct Interaction of the Novel Nox Proteins with p22phox Is Required for the Formation of a Functionally Active NADPH Oxidase*Journal of Biological Chemistry, 279
Marianne Price, S. Atkinson, U. Knaus, M. Dinauer (2002)
Rac Activation Induces NADPH Oxidase Activity in Transgenic COS phox Cells, and the Level of Superoxide Production Is Exchange Factor-dependent*The Journal of Biological Chemistry, 277
E. Schiffmann, B. Corcoran, S. Wahl (1975)
N-formylmethionyl peptides as chemoattractants for leucocytes.Proceedings of the National Academy of Sciences of the United States of America, 72 3
M. Lavigne, H. Malech, S. Holland, T. Leto (2001)
Genetic Demonstration of p47phox-Dependent Superoxide Anion Production in Murine Vascular Smooth Muscle CellsCirculation: Journal of the American Heart Association, 104
F. Esposito, Giuseppa Chirico, N. Gesualdi, I. Posadas, R. Ammendola, T. Russo, G. Cirino, F. Cimino (2003)
Protein Kinase B Activation by Reactive Oxygen Species Is Independent of Tyrosine Kinase Receptor Phosphorylation and Requires Src Activity*Journal of Biological Chemistry, 278
Jian-Mei Li, A. Mullen, S. Yun, F. Wientjes, Gabi Brouns, A. Thrasher, A. Shah (2002)
Essential Role of the NADPH Oxidase Subunit p47phox in Endothelial Cell Superoxide Production in Response to Phorbol Ester and Tumor Necrosis Factor-&agr;Circulation Research: Journal of the American Heart Association, 90
Young-Ah Suh, R. Arnold, B. Lassègue, Jing Shi, Xiang Xu, D. Sorescu, A. Chung, K. Griendling, J. Lambeth (1999)
Cell transformation by the superoxide-generating oxidase Mox1Nature, 401
Tina Bleeke, Hua Zhang, N. Madamanchi, C. Patterson, J. Faber (2004)
Catecholamine-Induced Vascular Wall Growth Is Dependent on Generation of Reactive Oxygen SpeciesCirculation Research: Journal of the American Heart Association, 94
Shuichi Saito, G. Frank, M. Mifune, M. Ohba, H. Utsunomiya, E. Motley, T. Inagami, S. Eguchi (2002)
Ligand-independent trans-Activation of the Platelet-derived Growth Factor Receptor by Reactive Oxygen Species Requires Protein Kinase C-δ and c-Src*The Journal of Biological Chemistry, 277
Jörg Kreuzer, C. Viedt, Ralf Brandes, Florian Seeger, A. Rosenkranz, H. Sauer, A. Babich, Bernd Nürnberg, H. Kather, H. Krieger-Brauer (2003)
Platelet‐derived growth factor activates production of reactive oxygen species by NAD(P)H‐oxidase in smooth muscle cells through Gi1,2The FASEB Journal, 17
S. Jones, V. O’Donnell, Jonathan Wood, J. Broughton, E. Hughes, O. Jones (1996)
Expression of phagocyte NADPH oxidase components in human endothelial cells.The American journal of physiology, 271 4 Pt 2
Maitrayee Sundaresan, Zu-Xi Yu, V. Ferrans, D. Sulciner, S. Gutkind, K. Irani, P. Goldschmidt-Clermont, T. Finkel (1996)
Regulation of reactive-oxygen-species generation in fibroblasts by Rac1.The Biochemical journal, 318 ( Pt 2)
F. Wernig, M. Mayr, Qingbo Xu (2003)
Mechanical Stretch-Induced Apoptosis in Smooth Muscle Cells Is Mediated by &bgr;1-Integrin Signaling PathwaysHypertension: Journal of the American Heart Association, 41
R. Paffenholz, R. Bergstrom, F. Pasutto, P. Wabnitz, R. Munroe, W. Jagla, U. Heinzmann, A. Marquardt, A. Bareiss, J. Laufs, A. Russ, G. Stumm, J. Schimenti, D. Bergstrom (2004)
Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase.Genes & development, 18 5
W. KEULENAER, R. Alexander, M. Ushio-Fukai, N. Ishizaka, K. Griendling (1998)
Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle.The Biochemical journal, 329 ( Pt 3)
Carine Soulet, Sandra Gendreau, K. Missy, V. Benard, M. Plantavid, B. Payrastre (2001)
Characterisation of Rac activation in thrombin‐ and collagen‐stimulated human blood plateletsFEBS Letters, 507
P. Pagano, S. Chanock, D. Siwik, W. Colucci, Justin Clark (1998)
Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts.Hypertension, 32 2
Giorgio Scita, P. Tenca, E. Frittoli, Arianna Tocchetti, M. Innocenti, Giuseppina Giardina, Pier Fiore (2000)
Signaling from Ras to Rac and beyond: not just a matter of GEFsThe EMBO Journal, 19
U. Landmesser, S. Dikalov, S. Price, Louise McCann, T. Fukai, S. Holland, W. Mitch, D. Harrison (2003)
Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.The Journal of clinical investigation, 111 8
R. Colavitti, G. Pani, B. Bedogni, R. Anzevino, S. Borrello, J. Waltenberger, T. Galeotti (2002)
Reactive Oxygen Species as Downstream Mediators of Angiogenic Signaling by Vascular Endothelial Growth Factor Receptor-2/KDR*The Journal of Biological Chemistry, 277
A. Abo, E. Pick, A. Hall, N. Totty, C. Teahan, A. Segal (1991)
Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1Nature, 353
David Gregg, F. Rauscher, P. Goldschmidt-Clermont (2003)
Rac regulates cardiovascular superoxide through diverse molecular interactions: more than a binary GTP switch.American journal of physiology. Cell physiology, 285 4
S. Koyasu (2003)
The role of PI3K in immune cellsNature Immunology, 4
R. Erickson, P. Langel-Peveri, A. Traynor-Kaplan, P. Heyworth, J. Curnutte (1999)
Activation of Human Neutrophil NADPH Oxidase by Phosphatidic Acid or Diacylglycerol in a Cell-free SystemThe Journal of Biological Chemistry, 274
C. Patterson, J. Ruef, N. Madamanchi, P. Barry-Lane, Zhaoyong Hu, C. Horaist, C. Ballinger, A. Brasier, C. Bode, M. Runge (1999)
Stimulation of a Vascular Smooth Muscle Cell NAD(P)H Oxidase by ThrombinThe Journal of Biological Chemistry, 274
A. Zafari, M. Ushio-Fukai, C. Minieri, M. Akers, B. Lassègue, K. Griendling (1999)
Arachidonic acid metabolites mediate angiotensin II-induced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells.Antioxidants & redox signaling, 1 2
Y. Ohara, T. Peterson, B. Zheng, J. Kuo, D. Harrison (1994)
Lysophosphatidylcholine increases vascular superoxide anion production via protein kinase C activation.Arteriosclerosis and thrombosis : a journal of vascular biology, 14 6
B. Wung, J. Cheng, S. Shyue, Danny Wang (2001)
NO Modulates Monocyte Chemotactic Protein-1 Expression in Endothelial Cells Under Cyclic StrainArteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 21
B. Lassègue, R. Clempus (2003)
Vascular NAD(P)H oxidases: specific features, expression, and regulation.American journal of physiology. Regulatory, integrative and comparative physiology, 285 2
P. Vignais (2002)
The superoxide-generating NADPH oxidase: structural aspects and activation mechanismCellular and Molecular Life Sciences CMLS, 59
T. Marumo, V. Schini-Kerth, B. Fisslthaler, R. Busse (1997)
Platelet-Derived Growth Factor–Stimulated Superoxide Anion Production Modulates Activation of Transcription Factor NF-κB and Expression of Monocyte Chemoattractant Protein 1 in Human Aortic Smooth Muscle CellsCirculation, 96
R. Touyz, E. Schiffrin (2000)
Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells.Pharmacological reviews, 52 4
A. Kalmes, G. Daum, A. Clowes (2001)
EGFR Transactivation in the Regulation of SMC FunctionAnnals of the New York Academy of Sciences, 947
Y. Groemping, K. Lapouge, S. Smerdon, K. Rittinger (2003)
Molecular Basis of Phosphorylation-Induced Activation of the NADPH OxidaseCell, 113
V. Thannickal, R. Day, S. Klinz, Michelle Bastien, J. Larios, B. Fanburg (2000)
Ras‐dependent and ‐independent regulation of reactive oxygen species by mitogenic growth factors and TGF‐β1The FASEB Journal, 14
T. Akasaki, H. Koga, H. Sumimoto (1999)
Phosphoinositide 3-Kinase-dependent and -independent Activation of the Small GTPase Rac2 in Human Neutrophils*The Journal of Biological Chemistry, 274
P. Lorenzo, M. Beheshti, G. Pettit, J. Stone, P. Blumberg (2000)
The guanine nucleotide exchange factor RasGRP is a high -affinity target for diacylglycerol and phorbol esters.Molecular pharmacology, 57 5
Li-Hong Yeh, Young Park, Riple Hansalia, Imraan Ahmed, S. Deshpande, Pascal Goldschmidt-Clermont, K. Irani, B. Alevriadou (1999)
Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS.American journal of physiology. Cell physiology, 276 4
J. Lambeth (2002)
Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidasesCurrent Opinion in Hematology, 9
M. Geiszt, J. Kopp, P. Várnai, Thomas Leto (2000)
Identification of renox, an NAD(P)H oxidase in kidney.Proceedings of the National Academy of Sciences of the United States of America, 97 14
K. Hata, K. Takeshige, H. Sumimoto (1997)
Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro.Biochemical and biophysical research communications, 241 2
A. Heinloth, K. Heermeier, U. Raff, C. Wanner, J. Galle (2000)
Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells.Journal of the American Society of Nephrology : JASN, 11 10
K. Mahadev, H. Motoshima, Xiangdong Wu, J. Ruddy, R. Arnold, G. Cheng, J. Lambeth, B. Goldstein (2004)
The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal TransductionMolecular and Cellular Biology, 24
Cédric Dewas, M. Fay, M. Gougerot-Pocidalo, J. El-Benna (2000)
The Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 1/2 Pathway Is Involved in formyl-Methionyl-Leucyl-Phenylalanine-Induced p47phox Phosphorylation in Human Neutrophils1The Journal of Immunology, 165
R. Brandes, F. Miller, S. Beer, J. Haendeler, J. Hoffmann, T. Ha, S. Holland, A. Görlach, R. Busse (2002)
The vascular NADPH oxidase subunit p47phox is involved in redox-mediated gene expression.Free radical biology & medicine, 32 11
M. Schäfer, C. Schäfer, N. Ewald, H. Piper, T. Noll (2003)
Role of Redox Signaling in the Autonomous Proliferative Response of Endothelial Cells to HypoxiaCirculation Research: Journal of the American Heart Association, 92
Akira Katsumi, J. Milanini, W. Kiosses, M. Pozo, R. Kaunas, S. Chien, K. Hahn, M. Schwartz (2002)
Effects of cell tension on the small GTPase RacThe Journal of Cell Biology, 158
M. Kazanietz, M. Caloca, P. Eroles, T. Fujii, M. García-Bermejo, M. Reilly, Hongbin Wang (2000)
Pharmacology of the receptors for the phorbol ester tumor promoters: multiple receptors with different biochemical properties.Biochemical pharmacology, 60 10
T. Ago, T. Kitazono, H. Ooboshi, T. Iyama, Youn-Hee Han, J. Takada, M. Wakisaka, S. Ibayashi, H. Utsumi, M. Iida (2004)
Nox4 as the Major Catalytic Component of an Endothelial NAD(P)H OxidaseCirculation: Journal of the American Heart Association, 109
K. Griendling, M. Ushio-Fukai, B. Lassègue, R. Alexander, Kathy Gnendlmg, B. Lassègue (1997)
Angiotensin II signaling in vascular smooth muscle. New concepts.Hypertension, 29 1 Pt 2
S. Dusi, M. Donini, F. Rossi (1996)
Mechanisms of NADPH oxidase activation: translocation of p40phox, Rac1 and Rac2 from the cytosol to the membranes in human neutrophils lacking p47phox or p67phox.The Biochemical journal, 314 ( Pt 2)
R. O'donnell, David Johnson, L. Ziegler, Andrew DiMattina, Robert Stone, J. Holland (2003)
Endothelial NADPH oxidase: mechanism of activation by low-density lipoprotein.Endothelium : journal of endothelial cell research, 10 6
Heidi Welch, W. Coadwell, C. Ellson, G. Ferguson, S. Andrews, H. Erdjument-Bromage, P. Tempst, P. Hawkins, L. Stephens (2002)
P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-Regulated Guanine-Nucleotide Exchange Factor for RacCell, 108
B. Wojciak-Stothard, A. Entwistle, Ritu Garg, A. Ridley (1998)
Regulation of TNF‐α‐induced reorganization of the actin cytoskeleton and cell‐cell junctions by Rho, Rac, and Cdc42 in human endothelial cellsJournal of Cellular Physiology, 176
Forbes Alderton, S. Rakhit, K. Kong, T. Palmer, B. Sambi, S. Pyne, N. Pyne (2001)
Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells.The Journal of biological chemistry, 276 30
R. Dana, T. Leto, H. Malech, R. Levy (1998)
Essential Requirement of Cytosolic Phospholipase A2for Activation of the Phagocyte NADPH Oxidase*The Journal of Biological Chemistry, 273
Yuji Saito, J. Haendeler, Y. Hojo, Kei Yamamoto, B. Berk (2001)
Receptor Heterodimerization: Essential Mechanism for Platelet-Derived Growth Factor-Induced Epidermal Growth Factor Receptor TransactivationMolecular and Cellular Biology, 21
T. Inoguchi, Ping Li, F. Umeda, Hai-Yan Yu, M. Kakimoto, M. Imamura, Tsuyoshi Aoki, T. Etoh, T. Hashimoto, M. Naruse, H. Sano, H. Utsumi, H. Nawata (2000)
High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.Diabetes, 49 11
F. Leeuwen, C. Olivo, S. Grivell, B. Giepmans, John Collard, W. Moolenaar (2003)
Rac Activation by Lysophosphatidic Acid LPA1Receptors through the Guanine Nucleotide Exchange Factor Tiam1*The Journal of Biological Chemistry, 278
J. Cherfils, P. Chardin (1999)
GEFs: structural basis for their activation of small GTP-binding proteins.Trends in biochemical sciences, 24 8
R. Brandes, C. Viedt, K. Nguyen, S. Beer, J. Kreuzer, R. Busse, A. Görlach (2001)
Thrombin-induced MCP-1 Expression Involves Activation of the p22phox-containing NADPH Oxidase in Human Vascular Smooth Muscle CellsThrombosis and Haemostasis, 85
A. Putnam, James Cunningham, Brendan Pillemer, D. Mooney (2003)
External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly.American journal of physiology. Cell physiology, 284 3
T. Yamakawa, Shun-ichi Tanaka, Y. Yamakawa, J. Kamei, K. Numaguchi, E. Motley, T. Inagami, S. Eguchi (2002)
Lysophosphatidylcholine Activates Extracellular Signal-Regulated Kinases 1/2 Through Reactive Oxygen Species in Rat Vascular Smooth Muscle CellsArteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 22
Wayne Alexander, K. Griendling, G. Keulenaer, D. Chappell, N. Ishizaka, R. Nerem, R. (1998)
Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase.Circulation research, 82 10
H. Momose, H. Kurosu, N. Tsujimoto, K. Kontani, K. Tsujita, H. Nishina, T. Katada (2003)
Dual Phosphorylation of Phosphoinositide 3-Kinase Adaptor Grb2-Associated Binder 2 Is Responsible for Superoxide Formation Synergistically Stimulated by Fcγ and Formyl-Methionyl-Leucyl-Phenylalanine Receptors in Differentiated THP-1 Cells 1The Journal of Immunology, 171
G. Kong, S. Lee, K. Kim (2001)
Inhibition of rac1 reduces PDGF-induced reactive oxygen species and proliferation in vascular smooth muscle cells.Journal of Korean Medical Science, 16
F. Buchanan, Cassondra Elliot, Melissa Gibbs, J. Exton (2000)
Translocation of the Rac1 Guanine Nucleotide Exchange Factor Tiam1 Induced by Platelet-derived Growth Factor and Lysophosphatidic Acid*The Journal of Biological Chemistry, 275
E. Tzima, M. Pozo, W. Kiosses, Samih Mohamed, Song Li, S. Chien, M. Schwartz (2002)
Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expressionThe EMBO Journal, 21
Y. Kanda, K. Mizuno, Y. Kuroki, Y. Watanabe (2001)
Thrombin‐induced p38 mitogen‐activated protein kinase activation is mediated by epidermal growth factor receptor transactivation pathwayBritish Journal of Pharmacology, 132
Jinah Hwang, A. Saha, Y. Boo, G. Sorescu, J. McNally, S. Holland, S. Dikalov, D. Giddens, K. Griendling, D. Harrison, H. Jo (2003)
Oscillatory shear stress stimulates endothelial production of O2- from p47phox-dependent NAD(P)H oxidases, leading to monocyte adhesion.The Journal of biological chemistry, 278 47
G. Cheng, J. Lambeth (2004)
NOXO1, Regulation of Lipid Binding, Localization, and Activation of Nox1 by the Phox Homology (PX) Domain*Journal of Biological Chemistry, 279
Qingbo Xu, Georg Schett, Chaohong Li, Yanhua Hu, Georg Wick (2000)
Mechanical stress-induced heat shock protein 70 expression in vascular smooth muscle cells is regulated by Rac and Ras small G proteins but not mitogen-activated protein kinases.Circulation research, 86 11
M. Geiszt, J. Witta, Judit Baff, K. Lekstrom, Thomas Leto (2003)
Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defenseThe FASEB Journal, 17
X. Deken, Dantong Wang, J. Dumont, F. Miot (2002)
Characterization of ThOX proteins as components of the thyroid H(2)O(2)-generating system.Experimental cell research, 273 2
Wei-Gen Li, F. Miller, Hannah Zhang, D. Spitz, L. Oberley, N. Weintraub (2001)
H2O2-induced O⨪2Production by a Non-phagocytic NAD(P)H Oxidase Causes Oxidant Injury*The Journal of Biological Chemistry, 276
Sohail Ahmed, E. Prigmore, S. Govind, C. Veryard, R. Kozma, F. Wientjes, A. Segal, L. Lim (1998)
Cryptic Rac-binding and p21 Cdc42HS/Rac -activated Kinase Phosphorylation Sites of NADPH Oxidase Component p67 phox *The Journal of Biological Chemistry, 273
M. Katsuyama, Chunyuan Fan, C. Yabe-Nishimura (2002)
NADPH Oxidase Is Involved in Prostaglandin F2α-induced Hypertrophy of Vascular Smooth Muscle CellsThe Journal of Biological Chemistry, 277
Y. Gorin, J. Ricono, Nam‐Ho Kim, B. Bhandari, G. Choudhury, H. Abboud (2003)
Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells.American journal of physiology. Renal physiology, 285 2
C. Hoyal, Abel Gutierrez, B. Young, S. Catz, Jun-hsiang Lin, P. Tsichlis, B. Babior (2003)
Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidaseProceedings of the National Academy of Sciences of the United States of America, 100
C. Viedt, J. Fei, H. Krieger-Brauer, R. Brandes, D. Teupser, M. Kamimura, H. Katus, J. Kreuzer (2003)
Role of p22phox in angiotensin II and platelet-derived growth factor AA induced activator protein 1 activation in vascular smooth muscle cellsJournal of Molecular Medicine, 82
H. Krieger-Brauer, P. Medda, H. Kather (1997)
Insulin-induced Activation of NADPH-dependent H2O2 Generation in Human Adipocyte Plasma Membranes Is Mediated by Gαi2*The Journal of Biological Chemistry, 272
B. Lassègue, D. Sorescu, K. Szöcs, Qiqin Yin, M. Akers, Yong Zhang, S. Grant, J. Lambeth, K. Griendling (2001)
Novel gp91phox Homologues in Vascular Smooth Muscle Cells: nox1 Mediates Angiotensin II-Induced Superoxide Formation and Redox-Sensitive Signaling PathwaysCirculation Research: Journal of the American Heart Association, 88
J. Lambeth, G. Cheng, R. Arnold, W. Edens (2000)
Novel homologs of gp91phox.Trends in biochemical sciences, 25 10
O. Jung, J. Schreiber, H. Geiger, T. Pedrazzini, R. Busse, R. Brandes (2004)
gp91phox-Containing NADPH Oxidase Mediates Endothelial Dysfunction in Renovascular HypertensionCirculation: Journal of the American Heart Association, 109
B. Bánfi, R. Clark, K. Steger, K. Krause (2003)
Two Novel Proteins Activate Superoxide Generation by the NADPH Oxidase NOX1*The Journal of Biological Chemistry, 278
D. Sorescu, Daiana Weiss, B. Lassègue, R. Clempus, K. Szöcs, G. Sorescu, Liisa Valppu, M. Quinn, J. Lambeth, J. Vega, W. Taylor, K. Griendling (2002)
Superoxide Production and Expression of Nox Family Proteins in Human AtherosclerosisCirculation: Journal of the American Heart Association, 105
Chang-Hoon Han, Jennifer Freeman, Taehoon Lee, S. Motalebi, J. Lambeth (1998)
Regulation of the Neutrophil Respiratory Burst OxidaseThe Journal of Biological Chemistry, 273
Tatsuo Tanimoto, A. Lungu, B. Berk (2004)
Sphingosine 1-Phosphate Transactivates the Platelet-Derived Growth Factor β Receptor and Epidermal Growth Factor Receptor in Vascular Smooth Muscle CellsCirculation Research: Journal of the American Heart Association, 94
H. Zeng, Dezheng Zhao, Suping Yang, K. Datta, D. Mukhopadhyay (2003)
Heterotrimeric Gαq/Gα11 Proteins Function Upstream of Vascular Endothelial Growth Factor (VEGF) Receptor-2 (KDR) Phosphorylation in Vascular Permeability Factor/VEGF Signaling*Journal of Biological Chemistry, 278
H. Park, Seung Lee, Dongeun Park, Jun Lee, S. Ryu, W. Lee, S. Rhee, Y. Bae (2004)
Sequential Activation of Phosphatidylinositol 3-Kinase, βPix, Rac1, and Nox1 in Growth Factor-Induced Production of H2O2Molecular and Cellular Biology, 24
Jan Galle, Reinhard Schneider, Alexandra Heinloth, Christoph Wanner, Peter Galle, Ernst Conzelmann, Stephanie Dimmeler, K. Heermeier (1999)
Lp(a) and LDL induce apoptosis in human endothelial cells and in rabbit aorta: role of oxidative stress.Kidney international, 55 4
M. Luchtefeld, H. Drexler, B. Schieffer (2003)
5-Lipoxygenase is involved in the angiotensin II-induced NAD(P)H-oxidase activation.Biochemical and biophysical research communications, 308 3
A. Shiose, J. Kuroda, K. Tsuruya, M. Hirai, H. Hirakata, S. Naito, M. Hattori, Y. Sakaki, H. Sumimoto (2001)
A Novel Superoxide-producing NAD(P)H Oxidase in Kidney*The Journal of Biological Chemistry, 276
F. DeLeo, J. Burritt, Lixin Yu, A. Jesaitis, M. Dinauer, W. Nauseef (2000)
Processing and Maturation of Flavocytochromeb 558 Include Incorporation of Heme as a Prerequisite for Heterodimer Assembly*The Journal of Biological Chemistry, 275
S. Jones, U. Knaus, G. Bokoch, E. Brown (1998)
Two Signaling Mechanisms for Activation of αMβ2 Avidity in Polymorphonuclear Neutrophils*The Journal of Biological Chemistry, 273
J. Laursen, S. Rajagopalan, Z. Galis, M. Tarpey, B. Freeman, D. Harrison (1997)
Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension.Circulation, 95 3
C. Heldin, B. Westermark (1999)
Mechanism of action and in vivo role of platelet-derived growth factor.Physiological reviews, 79 4
A. Görlach, R. Brandes, K. Nguyen, M. Amidi, F. Dehghani, R. Busse (2000)
A gp91phox containing NADPH oxidase selectively expressed in endothelial cells is a major source of oxygen radical generation in the arterial wall.Circulation research, 87 1
J. Cunnick, J. Dorsey, Todd Standley, J. Turkson, A. Kraker, D. Fry, R. Jove, Jie Wu (1998)
Role of Tyrosine Kinase Activity of Epidermal Growth Factor Receptor in the Lysophosphatidic Acid-stimulated Mitogen-activated Protein Kinase Pathway*The Journal of Biological Chemistry, 273
N. Kalinina, A. Agrotis, E. Tararak, Y. Antropova, P. Kanellakis, O. Ilyinskaya, M. Quinn, V. Smirnov, A. Bobik (2002)
Cytochrome b558—Dependent NAD(P)H Oxidase—Phox Units in Smooth Muscle and Macrophages of Atherosclerotic LesionsArteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 22
Z. Ungvari, A. Csiszar, A. Huang, P. Kaminski, M. Wolin, A. Koller (2003)
High Pressure Induces Superoxide Production in Isolated Arteries Via Protein Kinase C–Dependent Activation of NAD(P)H OxidaseCirculation: Journal of the American Heart Association, 108
T. Ago, F. Kuribayashi, H. Hiroaki, R. Takeya, Takashi Ito, D. Kohda, H. Sumimoto (2003)
Phosphorylation of p47phox directs phox homology domain from SH3 domain toward phosphoinositides, leading to phagocyte NADPH oxidase activationProceedings of the National Academy of Sciences of the United States of America, 100
L. Stephens, A. Eguinoa, S. Corey, Jackson Tr, P. Hawkins (1993)
Receptor stimulated accumulation of phosphatidylinositol (3,4,5)‐trisphosphate by G‐protein mediated pathways in human myeloid derived cells.The EMBO Journal, 12
S. Lee, Wei-wei Wang, G. Finlay, B. Fanburg (1999)
Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion.American journal of physiology. Lung cellular and molecular physiology, 277 2
Chaekyun Kim, C. Marchal, J. Penninger, M. Dinauer (2003)
The Hemopoietic Rho/Rac Guanine Nucleotide Exchange Factor Vav1 Regulates N-Formyl-Methionyl-Leucyl-Phenylalanine-Activated Neutrophil Functions 1The Journal of Immunology, 171
B. Wojciak-Stothard, A. Ridley (2003)
Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinasesThe Journal of Cell Biology, 161
O. Kranenburg, W. Moolenaar (2001)
Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonistsOncogene, 20
P. Dang, A. Cross, M. Quinn, B. Babior (2001)
Assembly of the neutrophil respiratory burst oxidase: A direct interaction between p67PHOX and cytochrome b558 IIProceedings of the National Academy of Sciences of the United States of America, 99
B. Bánfi, G. Molnár, A. Maturana, Klaus Steger, B. Hegedűs, N. Demaurex, K. Krause (2001)
A Ca2+-activated NADPH Oxidase in Testis, Spleen, and Lymph Nodes*The Journal of Biological Chemistry, 276
Y. Bae, J. Sung, O. Kim, Yeun Kim, K. Hur, A. Kazlauskas, S. Rhee (2000)
Platelet-derived Growth Factor-induced H2O2 Production Requires the Activation of Phosphatidylinositol 3-Kinase*The Journal of Biological Chemistry, 275
Jian-Mei Li, A. Shah (2003)
Mechanism of Endothelial Cell NADPH Oxidase Activation by Angiotensin IIThe Journal of Biological Chemistry, 278
H. Cai, K. Griendling, D. Harrison (2003)
The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases.Trends in pharmacological sciences, 24 9
K. Griendling, C. Minieri, J Ollerenshaw, R. Alexander (1994)
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.Circulation research, 74 6
Quan He, M. Lapointe (2001)
Src and Rac Mediate Endothelin-1 and Lysophosphatidic Acid Stimulation of the Human Brain Natriuretic Peptide PromoterHypertension: Journal of the American Heart Association, 37
Xi-lin Chen, Qiang Zhang, R. Zhao, R. Medford (2004)
Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase.American journal of physiology. Heart and circulatory physiology, 286 3
H. Hua, S. Munk, H. Goldberg, I. Fantus, C. Whiteside (2003)
High Glucose-suppressed Endothelin-1 Ca2+ Signaling via NADPH Oxidase and Diacylglycerol-sensitive Protein Kinase C Isozymes in Mesangial Cells*Journal of Biological Chemistry, 278
J. Benna, L. Faust, B. Babior (1994)
The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases.The Journal of biological chemistry, 269 38
G. Bokoch, B. Diebold (2002)
Current molecular models for NADPH oxidase regulation by Rac GTPase.Blood, 100 8
R. Takeya, N. Ueno, K. Kami, Masahiko Taura, M. Kohjima, Tomoko Izaki, H. Nunoi, H. Sumimoto (2003)
Novel Human Homologues of p47phox and p67phox Participate in Activation of Superoxide-producing NADPH Oxidases*Journal of Biological Chemistry, 278
A. Al‐Mehdi, Guochang Zhao, C. Dodia, Kasumi Tozawa, Karen Costa, V. Muzykantov, Christopher Ross, Frank Blecha, M. Dinauer, A. Fisher (1998)
Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+.Circulation research, 83 7
H. Sohn, M. Keller, T. Gloe, H. Morawietz, U. Rueckschloss, U. Pohl (2000)
The Small G-protein Rac Mediates Depolarization-induced Superoxide Formation in Human Endothelial Cells*The Journal of Biological Chemistry, 275
R. Frey, Arshad Rahman, J. Kefer, R. Minshall, A. Malik (2002)
PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells.Circulation research, 90 9
Yasuji Ryu, N. Takuwa, N. Sugimoto, S. Sakurada, S. Usui, H. Okamoto, O. Matsui, Y. Takuwa (2002)
Sphingosine-1-Phosphate, a Platelet-Derived Lysophospholipid Mediator, Negatively Regulates Cellular Rac Activity and Cell Migration in Vascular Smooth Muscle CellsCirculation Research: Journal of the American Heart Association, 90
K. Yasunari, K. Maeda, Munehiro Nakamura, J. Yoshikawa (2002)
Pressure Promotes Angiotensin II–Mediated Migration of Human Coronary Smooth Muscle Cells Through Increase in Oxidative StressHypertension: Journal of the American Heart Association, 39
U. Knaus, S. Morris, Hui-Jia Dong, J. Chernoff, G. Bokoch (1995)
Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors.Science, 269 5221
T. Paravicini, L. Gulluyan, G. Dusting, G. Drummond (2002)
Increased NADPH Oxidase Activity, gp91phox Expression, and Endothelium-Dependent Vasorelaxation During Neointima Formation in RabbitsCirculation Research: Journal of the American Heart Association, 91
Tonous Silfani, E. Freeman (2002)
Phosphatidylinositide 3-kinase regulates angiotensin II-induced cytosolic phospholipase A2 activity and growth in vascular smooth muscle cells.Archives of biochemistry and biophysics, 402 1
M. Geiszt, K. Lekstrom, S. Brenner, S. Hewitt, R. Dana, H. Malech, T. Leto (2003)
NAD(P)H Oxidase 1, a Product of Differentiated Colon Epithelial Cells, Can Partially Replace Glycoprotein 91phox in the Regulated Production of Superoxide by PhagocytesThe Journal of Immunology, 171
K. Grote, Inna Flach, M. Luchtefeld, E. Akin, S. Holland, H. Drexler, B. Schieffer (2003)
Mechanical Stretch Enhances mRNA Expression and Proenzyme Release of Matrix Metalloproteinase‐2 (MMP‐2) via NAD(P)H Oxidase‐Derived Reactive Oxygen SpeciesCirculation Research, 92
M. Ushio-Fukai, Yan-Yang Tang, T. Fukai, S. Dikalov, Yuxian Ma, M. Fujimoto, M. Quinn, P. Pagano, Chad Johnson, R. Alexander (2002)
Novel role of gp91(phox)-containing NAD(P)H oxidase in vascular endothelial growth factor-induced signaling and angiogenesis.Circulation research, 91 12
F. Rey, P. Pagano (2002)
The Reactive Adventitia: Fibroblast Oxidase in Vascular FunctionArteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association, 22
M. Hannigan, L. Zhan, Zhong Li, Youxi Ai, Dianqing Wu, Chi‐Kuang Huang (2002)
Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxisProceedings of the National Academy of Sciences of the United States of America, 99
U. Hink, N. Tsilimingas, M. Wendt, T. Münzel (2001)
Mechanisms Underlying Endothelial Dysfunction in Diabetes MellitusTreatments in Endocrinology, 2
M. Ushio-Fukai, K. Griendling, P. Becker, L. Hilenski, Sean Halleran, R. Alexander (2001)
Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells.Arteriosclerosis, thrombosis, and vascular biology, 21 4
M. Christ, J. Bauersachs, C. Liebetrau, M. Heck, A. Günther, M. Wehling (2002)
Glucose increases endothelial-dependent superoxide formation in coronary arteries by NAD(P)H oxidase activation: attenuation by the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin.Diabetes, 51 8
E. Freeman, M. Ruehr, R. Dorman (1998)
ANG II-induced translocation of cytosolic PLA2 to the nucleus in vascular smooth muscle cells.American journal of physiology. Cell physiology, 274 1
U. Schmitz, Kerstin Thömmes, I. Beier, W. Wagner, A. Sachinidis, R. Düsing, H. Vetter (2001)
Angiotensin II-induced Stimulation of p21-activated Kinase and c-Jun NH2-terminal Kinase Is Mediated by Rac1 and Nck*The Journal of Biological Chemistry, 276
Norihito Soga, John Connolly, M. Chellaiah, J. Kawamura, K. Hruska (2001)
Rac Regulates Vascular Endothelial Growth Factor Stimulated MotilityCell Communication & Adhesion, 8
P. Seshiah, D. Weber, P. Ročić, Liisa Valppu, Y. Taniyama, K. Griendling (2002)
Angiotensin II Stimulation of NAD(P)H Oxidase Activity: Upstream MediatorsCirculation Research: Journal of the American Heart Association, 91
U. Schmitz, Kerstin Thömmes, I. Beier, H. Vetter (2002)
Lysophosphatidic acid stimulates p21-activated kinase in vascular smooth muscle cells.Biochemical and biophysical research communications, 291 3
Y. Bae, Sang Kang, M. Seo, I. Baines, E. Tekle, P. Chock, S. Rhee (1997)
Epidermal Growth Factor (EGF)-induced Generation of Hydrogen PeroxideThe Journal of Biological Chemistry, 272
A. Srivastava (2002)
High glucose-induced activation of protein kinase signaling pathways in vascular smooth muscle cells: a potential role in the pathogenesis of vascular dysfunction in diabetes (review).International journal of molecular medicine, 9 1
AbstractOxygen-derived free radicals are thought to contribute to the initiation and progression of cardiovascular disease via several different mechanisms, such as consumption of nitric oxide, oxidation of proteins and lipids, and activation of redox-sensitive signalling cascades. Vascular NADPH oxidases are important sources of vascular radical formation. The activities of these enzymes, which in some aspects are similar to the leukocyte NADPH oxidase, are controlled on the expression level and complex activation mechanisms. As a plethora of vascular stimuli, such as growth factors, cytokines, physical stimuli, and lipids elicits radical formation by these enzymes, a careful analysis is required for the understanding of the activation of the NADPH oxidases. This article reviews the components of the NADPH oxidases in leukocytes and vascular tissue. Emphasis is put on the activation of the oxidases, including upstream signalling events and molecular modes of interaction between the subunits.
Cardiovascular Research – Oxford University Press
Published: Jan 1, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.