Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins

Nuclear localization and transactivating capacities of the papillary renal cell... The papillary renal cell carcinoma-associated t(X;1)(p11;q21) leads to fusion of the transcription factor TFE3 gene on the X-chromosome to a novel gene, PRCC, on chromosome 1. As a result, two putative fusion proteins are formed: PRCCTFE3, which contains all known domains for DNA binding, dimerization, and transactivation of the TFE3 protein, and the reciprocal product TFE3PRCC. Upon transfection into COS cells, both wild type and fusion proteins were found to be located in the nucleus. When comparing the transactivating capacities of these (fusion) proteins, significant differences were noted. PRCCTFE3 acted as a threefold better transactivator than wild type TFE3 both in a TFE3-specific and in a general (Zebra) reporter assay. In addition, PRCC and the two fusion proteins were found to be potent transactivators in the Zebra reporter assay. We propose that, as a result of the (X;1) translocation, fusion of the N-terminal PRCC sequences to TFE3 alters the transactivation capacity of the transcription factor thus leading to aberrant gene regulation and, ultimately, tumor formation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Oncogene Springer Journals

Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins

Loading next page...
 
/lp/springer-journals/nuclear-localization-and-transactivating-capacities-of-the-papillary-TqmOm0eyxm

References (28)

Publisher
Springer Journals
Copyright
Copyright © 2000 by Macmillan Publishers Limited
Subject
Medicine & Public Health; Medicine/Public Health, general; Internal Medicine; Cell Biology; Human Genetics; Oncology; Apoptosis
ISSN
0950-9232
eISSN
1476-5594
DOI
10.1038/sj.onc.1203255
Publisher site
See Article on Publisher Site

Abstract

The papillary renal cell carcinoma-associated t(X;1)(p11;q21) leads to fusion of the transcription factor TFE3 gene on the X-chromosome to a novel gene, PRCC, on chromosome 1. As a result, two putative fusion proteins are formed: PRCCTFE3, which contains all known domains for DNA binding, dimerization, and transactivation of the TFE3 protein, and the reciprocal product TFE3PRCC. Upon transfection into COS cells, both wild type and fusion proteins were found to be located in the nucleus. When comparing the transactivating capacities of these (fusion) proteins, significant differences were noted. PRCCTFE3 acted as a threefold better transactivator than wild type TFE3 both in a TFE3-specific and in a general (Zebra) reporter assay. In addition, PRCC and the two fusion proteins were found to be potent transactivators in the Zebra reporter assay. We propose that, as a result of the (X;1) translocation, fusion of the N-terminal PRCC sequences to TFE3 alters the transactivation capacity of the transcription factor thus leading to aberrant gene regulation and, ultimately, tumor formation.

Journal

OncogeneSpringer Journals

Published: Jan 20, 2000

There are no references for this article.