Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

DNA sequences of two yeast promoter-up mutants

DNA sequences of two yeast promoter-up mutants The yeast Saccharomyces cerevisiae has three genetic loci encoding different alcohol dehydrogenase (ADH) isozymes: ADC1, which encodes the classical fermentative isozyme ADHI1; ADR2, which encodes the glucose-repressed isozyme ADHII2; and ADM, which encodes an ADH isozyme found associated with mitochondria. When yeast are grown on glucose, the ADC1 gene is expressed, and the ADR2 gene repressed1,3,4. Conversely, growth on a non-fermentable carbon source such as ethanol or glycerol results in derepression of ADR2, and repression of ADC1. The ADC1 and ADR2 genes have been cloned and sequenced5–8, and a number of cis-acting mutations identified that cause constitutive expression of ADR2 9,10, and seem to fall into two classes11. The most abundant class consists of mutants that cannot be fully derepressed, and do not revert to wild type at a detectable level: these are caused by the insertion of a transposable element into the 5′-flanking region of the gene6,12. The second class of mutants do revert to a glucose-repressed phenotype at a detectable frequency, and when grown on non-fermentable carbon sources derepress ADR2 to levels up to five times those found in wild-type cells10. We report here the sequencing of the 5′-flanking regions of two such promoter-up, constitutive ADR2 mutants, in both of which the mutant phenotype is associated with an increase in length of a poly(A)·poly(T) tract 222 base pairs (bp) upstream of the gene. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

DNA sequences of two yeast promoter-up mutants

Loading next page...
 
/lp/springer-journals/dna-sequences-of-two-yeast-promoter-up-mutants-TxUHdGPKP9

References (21)

Publisher
Springer Journals
Copyright
Copyright © 1983 by Nature Publishing Group
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/304652a0
Publisher site
See Article on Publisher Site

Abstract

The yeast Saccharomyces cerevisiae has three genetic loci encoding different alcohol dehydrogenase (ADH) isozymes: ADC1, which encodes the classical fermentative isozyme ADHI1; ADR2, which encodes the glucose-repressed isozyme ADHII2; and ADM, which encodes an ADH isozyme found associated with mitochondria. When yeast are grown on glucose, the ADC1 gene is expressed, and the ADR2 gene repressed1,3,4. Conversely, growth on a non-fermentable carbon source such as ethanol or glycerol results in derepression of ADR2, and repression of ADC1. The ADC1 and ADR2 genes have been cloned and sequenced5–8, and a number of cis-acting mutations identified that cause constitutive expression of ADR2 9,10, and seem to fall into two classes11. The most abundant class consists of mutants that cannot be fully derepressed, and do not revert to wild type at a detectable level: these are caused by the insertion of a transposable element into the 5′-flanking region of the gene6,12. The second class of mutants do revert to a glucose-repressed phenotype at a detectable frequency, and when grown on non-fermentable carbon sources derepress ADR2 to levels up to five times those found in wild-type cells10. We report here the sequencing of the 5′-flanking regions of two such promoter-up, constitutive ADR2 mutants, in both of which the mutant phenotype is associated with an increase in length of a poly(A)·poly(T) tract 222 base pairs (bp) upstream of the gene.

Journal

NatureSpringer Journals

Published: Aug 18, 1983

There are no references for this article.