Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes

Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non‐specific actin polymerization during the assay, fluorescent G‐actin was mixed with thymosin β4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The EMBO Journal Wiley

Loading next page...
 
/lp/wiley/involvement-of-ezrin-moesin-in-de-novo-actin-assembly-on-phagosomal-U3EW0fTOuy

References (135)

Publisher
Wiley
Copyright
Copyright © 2013 Wiley Periodicals, Inc
ISSN
0261-4189
eISSN
1460-2075
DOI
10.1093/emboj/19.2.199
pmid
10637224
Publisher site
See Article on Publisher Site

Abstract

The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non‐specific actin polymerization during the assay, fluorescent G‐actin was mixed with thymosin β4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion.

Journal

The EMBO JournalWiley

Published: May 17, 2001

Keywords: ; ; ;

There are no references for this article.