Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Collignon, I. Varlet, E. Robertson (1996)
Relationship between asymmetric nodal expression and the direction of embryonic turningNature, 381
Kitamura (1999)
10.1242/dev.126.24.5749Development, 126
M. Logan, Sylvia Pagán-Westphal, Devyn Smith, L. Paganessi, C. Tabin (1998)
The Transcription Factor Pitx2 Mediates Situs-Specific Morphogenesis in Response to Left-Right Asymmetric SignalsCell, 94
M. Campione, H. Steinbeisser, A. Schweickert, K. Deissler, F. Bebber, L. Lowe, Sonja Nowotschin, C. Viebahn, Pascal Haffter, M. Kuehn, M. Blum (1999)
The homeobox gene Pitx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping.Development, 126 6
A. MariaJ., Van, Kempen, C. Fromaget, D. Gros, A. Moorman, W. Lamers (1991)
Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart.Circulation research, 68 6
Jeong‐Wook Seo, N. Brown, S. Ho, R. Anderson (1992)
Abnormal Laterality and Congenital Cardiac Anomalies: Relations of Visceral and Cardiac Morphologies in the iv/iv MouseCirculation, 86
M. Piedra, J. Icardo, M. Albajar, J. Rodríguez-Rey, M. Ros (1998)
Pitx2 Participates in the Late Phase of the Pathway Controlling Left-Right AsymmetryCell, 94
M. Fishman, K. Chien (1997)
Fashioning the vertebrate heart: earliest embryonic decisions.Development, 124 11
Gage (1999)
10.1242/dev.126.20.4643Development, 126
D. Franco, M. Campione, R. Kelly, P. Zammit, M. Buckingham, W. Lamers, A. Moorman (2000)
Multiple Transcriptional Domains, With Distinct Left and Right Components, in the Atrial Chambers of the Developing HeartCirculation Research: Journal of the American Heart Association, 87
L. Lowe, D. Supp, K. Sampath, T. Yokoyama, C. Wright, S. Potter, P. Overbeek, M. Kuehn (1996)
Conserved left–right asymmetry of nodal expression and alterations in murine situs inversusNature, 381
T. Yokoyama, N. Copeland, N. Jenkins, C. Montgomery, F. Elder, P. Overbeek (1993)
Reversal of left-right asymmetry: a situs inversus mutation.Science, 260 5108
M. Campione, M. Ros, J. Icardo, Elisa Piedra, V. Christoffels, A. Schweickert, M. Blum, Diego Franco, A. Moorman (2001)
Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice.Developmental biology, 231 1
D. Mv, C. Sánchez-Gómez, Palomino Ma (1989)
The primitive cardiac regions in the straight tube heart (Stage 9) and their anatomical expression in the mature heart: An experimental study in the chick embryo.Journal of anatomy, 165
Z. Bao, B. Bruneau, J. Seidman, C. Seidman, C. Cepko (1999)
Regulation of chamber-specific gene expression in the developing heart by Irx4.Science, 283 5405
T. King, R. Beddington, N. Brown (1998)
The role of the brachyury gene in heart development and left–right specification in the mouseMechanisms of Development, 79
Diego Franco, Piet Boer, C. Vries, W. Lamers, Antoon Moorman (2001)
Methods on in situ hybridization, immunohistochemistry and beta-galactosidase reporter gene detection.European journal of morphology, 39 1
P. Gage, Hoonkyo Suh, S. Camper (1999)
Dosage requirement of Pitx2 for development of multiple organs.Development, 126 20
H. Yoshioka, C. Meno, K. Koshiba, M. Sugihara, Hiroyuki Itoh, Y. Ishimaru, Takashi Inoue, H. Ohuchi, E. Semina, J. Murray, H. Hamada, S. Noji (1998)
Pitx2, a Bicoid-Type Homeobox Gene, Is Involved in a Lefty-Signaling Pathway in Determination of Left-Right AsymmetryCell, 94
Campione (1999)
10.1242/dev.126.6.1225Development, 126
A. Ryan, B. Blumberg, Concepción Rodríguez-Esteban, S. Yonei‐Tamura, K. Tamura, T. Tsukui, J. Peña, Walid Sabbagh, J. Greenwald, S. Choe, D. Norris, E. Robertson, R. Evans, M. Rosenfeld, J. Belmonte (1998)
Pitx2 determines left–right asymmetry of internal organs in vertebratesNature, 394
R. Kelly, P. Zammit, M. Buckingham (1999)
Cardiosensor mice and transcriptional subdomains of the vertebrate heart.Trends in cardiovascular medicine, 9 1-2
Fishman (1997)
10.1242/dev.124.11.2099Development, 124
P. Zammit, R. Kelly, D. Franco, N. Brown, A. Moorman, M. Buckingham (2000)
Suppression of atrial myosin gene expression occurs independently in the left and right ventricles of the developing mouse heartDevelopmental Dynamics, 217
A. Moorman, W. Lamers (1994)
Molecular anatomy of the developing heart.Trends in cardiovascular medicine, 4 6
R. Ross, S. Navankasattusas, R. Harvey, K. Chien (1996)
An HF-1a/HF-1b/MEF-2 combinatorial element confers cardiac ventricular specificity and established an anterior-posterior gradient of expression.Development, 122 6
C. Meno, Y. Saijoh, H. Fujii, M. Ikeda, T. Yokoyama, M. Yokoyama, Y. Toyoda, H. Hamada (1996)
Left–right asymmetric expression of the TGFβ-family member lefty in mouse embryosNature, 381
Dorothy Supp, Dave Witte, S. Potter, Martina Brueckner (1997)
Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum miceNature, 389
D. Franco, Mary Markman, G. Wagenaar, J. Ya, W. Lamers, A. Moorman (1999)
Myosin light chain 2a and 2v identifies the embryonic outflow tract myocardium in the developing rodent heartThe Anatomical Record, 254
K. Kitamura, Hirohito Miura, S. Miyagawa‐Tomita, M. Yanazawa, Y. Katoh-Fukui, R. Suzuki, H. Ohuchi, Atuko Suehiro, Y. Motegi, Yoko Nakahara, S. Kondo, M. Yokoyama (1999)
Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism.Development, 126 24
M. Kempen, J. Vermeulen, A. Moorman, D. Gros, D. Paul, W. Lamers (1996)
Developmental changes of connexin40 and connexin43 mRNA distribution patterns in the rat heart.Cardiovascular research, 32 5
Robert Kelly, Peter Zammit, Achim Schneider, Serge Alonso, Christine Biben, Margaret Buckingham (1997)
Embryonic and fetal myogenic programs act through separate enhancers at the MLC1F/3F locus.Developmental biology, 187 2
J. Icardo, M Vega (1991)
Spectrum of Heart Malformations in Mice With Situs Solitus, Situs Inversus, and Associated Visceral HeterotaxyCirculation, 84
J. Icardo (1990)
Development of the Outflow TractAnnals of the New York Academy of Sciences, 588
C. Meno, A. Shimono, Y. Saijoh, K. Yashiro, K. Mochida, S. Ohishi, S. Noji, H. Kondoh, H. Hamada (1998)
lefty-1 Is Required for Left-Right Determination as a Regulator of lefty-2 and nodalCell, 94
Webb (1996)
10.1007/BF00196313Anat Embryol, 194
Gurparkash Singh, Dorothy Supp, C. Schreiner, J. McNeish, H. Merker, N. Copeland, Nancy Jenkins, S. Potter, William Scott (1991)
legless insertional mutation: morphological, molecular, and genetic characterization.Genes & development, 5 12A
G. Lyons (1994)
In situ analysis of the cardiac muscle gene program during embryogenesis.Trends in cardiovascular medicine, 4 2
R. Kelly, D. Franco, A. Moorman, M. Buckingham (1999)
Regionalization of Transcriptional Potential in the Myocardium
N. Brown, Robert Anderson (1999)
Symmetry and Laterality in the Human Heart
Diego Franco, W. Lamers, A. Moorman (1998)
Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model.Cardiovascular research, 38 1
R. Burdine, A. Schier (2000)
Conserved and divergent mechanisms in left-right axis formation.Genes & development, 14 7
K. Yutzey, J. Rhee, D. Bader (1994)
Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart.Development, 120 4
Tiffani Thomas, H. Yamagishi, P. Overbeek, E. Olson, D. Srivastava (1998)
The bHLH factors, dHAND and eHAND, specify pulmonary and systemic cardiac ventricles independent of left-right sidedness.Developmental biology, 196 2
J. Sanes, J. Rubenstein, J. Nicolas (1986)
Use of a recombinant retrovirus to study post‐implantation cell lineage in mouse embryos.The EMBO Journal, 5
R. Kelly, S. Alonso, S. Tajbakhsh, G. Cossu, M. Buckingham (1995)
Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic miceThe Journal of Cell Biology, 129
B. Bruneau, Z. Bao, Makoto Tanaka, J. Schott, S. Izumo, C. Cepko, J. Seidman, C. Seidman (2000)
Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand.Developmental biology, 217 2
C. Biben, R. Harvey (1997)
Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development.Genes & development, 11 11
Ross (1996)
10.1242/dev.122.6.1799Development, 122
Diego Franco, R. Kelly, W. Lamers, M. Buckingham, A. Moorman (1997)
Regionalized transcriptional domains of myosin light chain 3f transgenes in the embryonic mouse heart: morphogenetic implications.Developmental biology, 188 1
Mei-Fang Lu, C. Pressman, Rex Dyer, Randy Johnson, James Martin (1999)
Function of Rieger syndrome gene in left–right asymmetry and craniofacial developmentNature, 401
R. Kelly, P. Zammit, V. Mouly, G. Butler-Browne, M. Buckingham (1998)
Dynamic left/right regionalisation of endogenous myosin light chain 3F transcripts in the developing mouse heart.Journal of molecular and cellular cardiology, 30 6
A. Maude (1893)
Cardiac PathologyBritish Medical Journal, 1
A. Schweickert, M. Campione, H. Steinbeisser, M. Blum (2000)
Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left–right asymmetryMechanisms of Development, 90
K. Hummel, Dorothy Chapman (1959)
VISCERAL INVERSION AND ASSOCIATED ANOMALIES IN THE MOUSEJournal of Heredity, 50
Yutzey (1994)
10.1242/dev.120.4.871Development, 120
Suk Oh, En Li (1997)
The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse.Genes & development, 11 14
I. Kuisk, H. Li, D. Tran, Y. Capetanaki (1996)
A single MEF2 site governs desmin transcription in both heart and skeletal muscle during mouse embryogenesis.Developmental biology, 174 1
K. Yutzey, D. Bader (1995)
Diversification of cardiomyogenic cell lineages during early heart development.Circulation research, 77 2
Abstract Transcriptional differences between left and right cardiac chambers are revealed by an nlacZ reporter transgene controlled by regulatory sequences of the MLC3F gene, which is expressed in the left ventricle (LV), atrioventricular canal (AVC), and right atrium (RA). To examine the role of left‐right signalling in the acquisition of left and right chamber identity, we have investigated MLC3F transgene expression in iv mutant mice. iv/iv mice exhibit randomised direction of heart looping and an elevated frequency of associated laterality defects, including atrial isomerism. At fetal stages, 3F‐nlacZ‐2E transgene expression remains confined to the morphological LV, AVC, and RA in L‐loop hearts, although these appear on the opposite side of the body. In cases of morphologically distinguishable right atrial appendage isomerism, both atrial appendages show strong transgene expression. Conversely, specimens with morphological left atrial appendage isomerism show only weak expression in both atrial appendages. The earliest left‐right atrial differences in the expression of the 3F‐nlacZ‐2E transgene are observed at E8.5. DiI labelling experiments confirmed that transcriptional regionalisation of the 3F‐nlacZ‐2E transgene at this stage reflects future atrial chamber identity. In some iv/iv embryos at E8.5, the asymmetry of 3F‐nlacZ‐2E expression was lost, suggesting atrial isomerism at the transcriptional level prior to chamber formation. These data suggest that molecular specification of left and right atrial but not ventricular chambers is dependent on left‐right axial cues. © 2001 Wiley‐Liss, Inc.
Developmental Dynamics – Wiley
Published: Jun 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.