Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ray (1994)
Peptide immunogen mimicry of putative E1 glycoprotein-specific epitopes in hepatitis C virusJ Virol, 68
H. Kwon, Thomas Lagace, M. McNutt, J. Horton, J. Deisenhofer (2008)
Molecular basis for LDL receptor recognition by PCSK9Proceedings of the National Academy of Sciences, 105
K. Meyer, A. Basu, C. Przysiecki, L. Lagging, A. Bisceglie, A. Conley, R. Ray (2002)
Complement-Mediated Enhancement of Antibody Function for Neutralization of Pseudotype Virus Containing Hepatitis C Virus E2 Chimeric GlycoproteinJournal of Virology, 76
Anna Albecka, R. Montserret, T. Krey, A. Tarr, E. Diesis, J. Ball, V. Descamps, G. Duverlie, F. Rey, F. Penin, J. Dubuisson (2010)
Identification of New Functional Regions in Hepatitis C Virus Envelope Glycoprotein E2Journal of Virology, 85
P. André, F. Komurian-Pradel, S. Deforges, M. Perret, J. Berland, M. Sodoyer, S. Pol, C. Bréchot, G. Paranhos-Baccalà, V. Lotteau (2002)
Characterization of Low- and Very-Low-Density Hepatitis C Virus RNA-Containing ParticlesJournal of Virology, 76
H. Barth, C. Schäfer, M. Adah, Fuming Zhang, R. Linhardt, H. Toyoda, A. Kinoshita-Toyoda, T. Toida, T. Kuppevelt, E. Depla, F. Weizsäcker, H. Blum, T. Baumert (2003)
Cellular Binding of Hepatitis C Virus Envelope Glycoprotein E2 Requires Cell Surface Heparan Sulfate*Journal of Biological Chemistry, 278
J. Segrest, Martin Jones, H. Loof, N. Dashti (2001)
Structure of apolipoprotein B-100 in low density lipoproteins.Journal of lipid research, 42 9
Dimitri Lavillette, E. Pécheur, P. Donot, J. Fresquet, J. Molle, R. Corbau, M. Dreux, F. Penin, F. Cosset (2007)
Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C VirusJournal of Virology, 81
M. Domínguez, R. Miquel, J. Colmenero, Montserrat Moreno, J. García-Pagán, J. Bosch, V. Arroyo, P. Ginés, J. Caballería, R. Bataller (2009)
Hepatic expression of CXC chemokines predicts portal hypertension and survival in patients with alcoholic hepatitis.Gastroenterology, 136 5
A. Ciccaglione, A. Costantino, C. Marcantonio, M. Equestre, A. Geraci, M. Rapicetta (2001)
Mutagenesis of hepatitis C virus E1 protein affects its membrane-permeabilizing activity.The Journal of general virology, 82 Pt 9
P. Gastaminza, G. Cheng, S. Wieland, Jin Zhong, W. Liao, F. Chisari (2007)
Cellular Determinants of Hepatitis C Virus Assembly, Maturation, Degradation, and SecretionJournal of Virology, 82
S. Takikawa, K. Ishii, H. Aizaki, Tetsuro Suzuki, H. Asakura, Y. Matsuura, T. Miyamura (2000)
Cell Fusion Activity of Hepatitis C Virus Envelope ProteinsJournal of Virology, 74
S. Molina, V. Castet, C. Fournier-Wirth, L. Pichard‐Garcia, R. Avner, D. Harats, J. Roitelman, R. Barbaras, P. Graber, P. Ghersa, M. Smolarsky, A. Funaro, F. Malavasi, D. Larrey, J. Coste, J. Fabre, A. Sa-cunha, P. Maurel (2007)
The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus.Journal of hepatology, 46 3
B. Sachais, A. Kuo, T. Nassar, J. Morgan, K. Karikó, K. Williams, M. Feldman, M. Aviram, N. Shah, L. Jarett, M. Poncz, D. Cines, A. Higazi (2002)
Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface.Blood, 99 10
Suzanne Dorfman, A. Lichtenstein (2006)
Dietary fatty acids differentially modulate messenger RNA abundance of low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and microsomal triglyceride transfer protein in Golden-Syrian hamsters.Metabolism: clinical and experimental, 55 5
H. Drummer, P. Poumbourios (2004)
Hepatitis C Virus Glycoprotein E2 Contains a Membrane-proximal Heptad Repeat Sequence That Is Essential for E1E2 Glycoprotein Heterodimerization and Viral Entry*Journal of Biological Chemistry, 279
M. Monazahian, I. Böhme, S. Bonk, Andrea Koch, C. Scholz, S. Grethe, R. Thomssen (1999)
Low density lipoprotein receptor as a candidate receptor for hepatitis C virusJournal of Medical Virology, 57
A. Basu, Aster Beyene, K. Meyer, R. Ray (2004)
The Hypervariable Region 1 of the E2 Glycoprotein of Hepatitis C Virus Binds to Glycosaminoglycans, but This Binding Does Not Lead to Infection in a Pseudotype SystemJournal of Virology, 78
K. Meyer, A. Basu, R. Ray (2000)
Functional features of hepatitis C virus glycoproteins for pseudotype virus entry into mammalian cells.Virology, 276 1
Nicholas Denis, H. Palmer-Smith, F. Elisma, A. Busuttil, T. Wright, M. Khalil, A. Prat, N. Seidah, M. Chrétien, J. Mayne, D. Figeys (2011)
Quantitative proteomic analysis of PCSK9 gain of function in human hepatic HuH7 cells.Journal of proteome research, 10 4
M. Hsu, Jie Zhang, M. Flint, C. Logvinoff, C. Cheng‐Mayer, C. Rice, J. McKeating (2003)
Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particlesProceedings of the National Academy of Sciences of the United States of America, 100
A. Basu, T. Kanda, Aster Beyene, Kousuke Saito, K. Meyer, R. Ray (2007)
Sulfated Homologues of Heparin Inhibit Hepatitis C Virus Entry into Mammalian CellsJournal of Virology, 81
B. Bartosch, J. Dubuisson, F. Cosset (2003)
Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein ComplexesThe Journal of Experimental Medicine, 197
L. Lagging, K. Meyer, R. Owens, R. Ray (1998)
Functional Role of Hepatitis C Virus Chimeric Glycoproteins in the Infectivity of Pseudotyped VirusJournal of Virology, 72
T. Kanda, A. Basu, R. Steele, T. Wakita, J. Ryerse, R. Ray, R. Ray (2006)
Generation of Infectious Hepatitis C Virus in Immortalized Human HepatocytesJournal of Virology, 80
R. Ray, A. Khanna, L. Lagging, K. Meyer, Q. Choo, R. Ralston, M. Houghton, P. Becherer (1994)
Peptide Immunogen Mimicry of Putative E1 Glycoprotein-Specific Epitopes in Hepatitis C VirusJournal of Virology, 68
Jieyun Jiang, G. Luo (2009)
Apolipoprotein E but Not B Is Required for the Formation of Infectious Hepatitis C Virus ParticlesJournal of Virology, 83
V. Icard, Olivier Diaz, C. Scholtès, L. Perrin-Cocon, C. Ramière, R. Bartenschlager, F. Penin, V. Lotteau, P. André (2009)
Secretion of Hepatitis C Virus Envelope Glycoproteins Depends on Assembly of Apolipoprotein B Positive LipoproteinsPLoS ONE, 4
D. Hatters, C. Peters-Libeu, K. Weisgraber (2006)
Apolipoprotein E structure: insights into function.Trends in biochemical sciences, 31 8
R. Garry, S. Dash (2003)
Proteomics computational analyses suggest that hepatitis C virus E1 and pestivirus E2 envelope glycoproteins are truncated class II fusion proteins.Virology, 307 2
M. Evans, T. Hahn, Donna Tscherne, A. Syder, M. Panis, B. Wölk, T. Hatziioannou, J. McKeating, P. Bieniasz, C. Rice (2007)
Claudin-1 is a hepatitis C virus co-receptor required for a late step in entryNature, 446
V. Agnello, G. Abel, Mutasim Elfahal, G. Knight, Qing-Xiu Zhang (1999)
Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor.Proceedings of the National Academy of Sciences of the United States of America, 96 22
D. Owen, Hua Huang, Jin-cui Ye, M. Gale (2009)
Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor.Virology, 394 1
E. Lorent, H. Bierau, Y. Engelborghs, G. Verheyden, F. Bosman (2008)
Structural characterisation of the hepatitis C envelope glycoprotein E1 ectodomain derived from a mammalian and a yeast expression system.Vaccine, 26 3
Reiner Thomssen, S. Bonk, A. Thiele (1993)
Density heterogeneities of hepatitis C virus in human sera due to the binding of β-lipoproteins and immunoglobulinsMedical Microbiology and Immunology, 182
M. Zaldivar, K. Pauels, P. Hundelshausen, M. Berres, P. Schmitz, J. Bornemann, M. Kowalska, N. Gassler, K. Streetz, R. Weiskirchen, C. Trautwein, C. Weber, H. Wasmuth (2010)
CXC chemokine ligand 4 (Cxcl4) is a platelet‐derived mediator of experimental liver fibrosisHepatology, 51
P. Maillard, T. Huby, Ursula Andréo, M. Moreau, J. Chapman, A. Budkowska (2006)
The interaction of natural hepatitis C virus with human scavenger receptor SR‐BI/Cla1 is mediated by ApoB‐containing lipoproteinsThe FASEB Journal, 20
K. Meyer, Aster Beyene, T. Bowlin, A. Basu, R. Ray (2004)
Coexpression of Hepatitis C Virus E1 and E2 Chimeric Envelope Glycoproteins Displays Separable Ligand Sensitivity and Increases Pseudotype Infectious TiterJournal of Virology, 78
Our previous studies demonstrated that hepatitis C virus (HCV) envelope glycoproteins 1 and 2 (E1 and E2) display distinct reactivity to different cell‐surface molecules. In this study, we characterized the interaction of E1 and E2 with apolipoproteins in facilitating virus entry. The results suggested a higher neutralization of vesicular stomatitis virus (VSV)/HCV E1‐G pseudotype infectivity by antibodies to apolipoprotein E (ApoE) than apolipoprotein B (ApoB), with VSV/HCV E2‐G pseudotype infectivity remaining largely unaffected. Neutralization of cell‐culture–grown HCV infectivity by antiserum to ApoE and, to a lesser extent, by ApoB further verified their involvement in virus entry. HCV E1, but not E2, displayed binding with ApoE and ApoB by enzyme‐linked immunosorbent assay. Binding of E1 with apolipoproteins were further supported by coimmunoprecipitation from human hepatocytes expressing E1. Rabbit antiserum to a selected E1 ectodomain‐derived peptide displayed ∼50% neutralization of E1‐G pseudotype infectivity. Furthermore, E1 ectodomain‐derived synthetic peptides significantly inhibited the interaction of E1 with both the apolipoproteins. Investigation on the role of low‐density lipoprotein receptor (LDL‐R) as a hepatocyte surface receptor for virus entry suggested a significant reduction in E1‐G pseudotype plaque numbers (∼70%) by inhibiting LDL‐R ligand‐binding activity using human proprotein convertase subtilisin/kexin type 9 and platelet factor‐4, whereas they had a minimal inhibitory effect on the E2‐G pseudotype. Conclusion: Together, the results suggested an association between HCV E1 and apolipoproteins, which may facilitate virus entry through LDL‐R into mammalian cells. (HEPATOLOGY 2011;)
Hepatology – Wolters Kluwer Health
Published: Oct 1, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.