Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Meléndez‐Ferro, E. Pérez‐Costas, B. Villar-Cheda, X. Abalo, Rolando Rodríguez-Muñoz, M. Rodicio, R. Anadón (2002)
Ontogeny of γ‐aminobutyric acid‐immunoreactive neuronal populations in the forebrain and midbrain of the sea lampreyJournal of Comparative Neurology, 446
J. McKENDRICK (1909)
The Central Nervous System of VertebratesNature, 81
A. Reiner (1993)
Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex.Comparative biochemistry and physiology. Comparative physiology, 104 4
A. Reiner (1991)
A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex.Brain, behavior and evolution, 38 2-3
(1946)
El cerebro de los batracios
I. Kratskin, N. Kenigfest, J. Repérant, J. Rio, N. Vesselkin (1992)
Presumptive GABAergic feedback input to the frog olfactory bulb: a double labelling study with retrograde axonal tracing and GABA immunohistochemistryBrain Research, 581
Inmaculada Cobos, L. Puelles, Salvador Martínez (2001)
The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas).Developmental biology, 239 1
K. Hamilton (1992)
Distribution of immunoreactivity for gamma-aminobutyric acid in the salamander olfactory bulb.The Journal of comparative neurology, 319 4
C. Kolmac, J. Mitrofanis (1999)
Organization of the basal forebrain projection to the thalamus in ratsNeuroscience Letters, 272
(2001)
Aná lisis de la región claustroamigdalina en base a expresión de genes y glía radial
Gertrudis González, L. Puelles, L. Medina (2002)
Organization of the mouse dorsal thalamus based on topology, calretinin immnunostaining, and gene expressionBrain Research Bulletin, 57
S. Anderson, M. Mione, Kyuson Yun, J. Rubenstein (1999)
Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis.Cerebral cortex, 9 6
R. Northcutt, M. Ronan (1992)
Afferent and efferent connections of the bullfrog medial pallium.Brain, behavior and evolution, 40 1
JG Corbin, S Nery, G Fishell (2001)
Telencephalic cells take a tangent: non‐radial migration in the mammalian forebrain. Nat Neurosci, 4
M. Martinoli, P. Dubourg, M. Geffard, A. Calas, O. Kah (2004)
Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish, Carassius auratusCell and Tissue Research, 260
Anthony Lohman, W. Smeets (1993)
Overview of the main and accessory olfactory bulb projections in reptiles.Brain, behavior and evolution, 41 3-5
F. Szele, H. Chin, Marisa Rowlson, C. Cepko (2002)
Sox-9 and cDachsund-2 expression in the developing chick telencephalonMechanisms of Development, 112
E. Lanuza, M. Halpern (1997)
Afferent and efferent connections of the nucleus sphericus in the snake Thamnophis sirtalis: Convergence of olfactory and vomeronasal information in the lateral cortex and the amygdalaJournal of Comparative Neurology, 385
S. Guirado, J. Davila, M. Real, L. Medina (1999)
Nucleus accumbens in the lizard Psammodromus algirus: chemoarchitecture and cortical afferent connectionsJournal of Comparative Neurology, 405
W. Wilczynski, R. Northcutt (1983)
Connections of the bullfrog striatum: Afferent organizationJournal of Comparative Neurology, 214
(1985)
An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immuno - cytochemistry
Nils Holmgren (1925)
POINTS OF VIEW CONCERNING FORE-BRAIN MORPHOLOGY IN HIGHER VERTEBRATESActa Zoologica, 6
S. Winans, F. Scalia (1970)
Amygdaloid Nucleus: New Afferent Input from the Vomeronasal OrganScience, 170
K. Shimamura, J. Rubenstein (1997)
Inductive interactions direct early regionalization of the mouse forebrain.Development, 124 14
H Kuhlenbeck (1973)
Overall morphological pattern, 3
L. Puelles, F. Milán, M. Martı́nez-de-la-Torre (1996)
A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations.Brain, behavior and evolution, 47 6
M. Halpern (1972)
Some connections of the telencephalon of the frog, Rana pipiens. An experimental study.Brain, behavior and evolution, 6 1
Z. Katarova, G. Sekerková, S. Prodan, E. Mugnaini, G. Szabó (2000)
Domain‐restricted expression of two glutamic acid decarboxylase genes in midgestation mouse embryosJournal of Comparative Neurology, 424
R. Northcutt (1974)
Some histochemical observations on the telencephalon of the bullfrog, Rana catesbeiana shawJournal of Comparative Neurology, 157
E. Lanuza, M. Belekhova, A. Martínez-Marcos, C. Font, F. Martínez-García (1998)
Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard Podarcis hispanicaEuropean Journal of Neuroscience, 10
C. Herrick (1910)
The morphology of the forebrain in amphibia and reptiliaJournal of Comparative Neurology and Psychology, 20
F. Scalia, Gregory Gallousis, Suri Roca (1991)
Differential projections of the main and accessory olfactory bulb in the frogJournal of Comparative Neurology, 305
S. Guirado, J. Davila, M. Real, L. Medina (2000)
Light and electron microscopic evidence for projections from the thalamic nucleus rotundus to targets in the basal ganglia, the dorsal ventricular ridge, and the amygdaloid complex in a lizardJournal of Comparative Neurology, 424
O. Marín, W. Smeets, Agustín González (1997)
Distribution of choline acetyltransferase immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibiansJournal of Comparative Neurology, 382
K. Anderson, A. Reiner (1991)
Striatonigral projection neurons: A retrograde labeling study of the percentages that contain substance P or enkephalin in pigeonsJournal of Comparative Neurology, 303
K. Anderson, A. Reiner (1990)
Distribution and relative abundance of neurons in the pigeon forebrain containing somatostatin, neuropeptide Y, or bothJournal of Comparative Neurology, 299
O. Marín, W. Smeets, Agustín González (1997)
Basal ganglia organization in amphibians: Catecholaminergic innervation of the striatum and the nucleus accumbensJournal of Comparative Neurology, 378
A. Reiner, S. Brauth, C. Kitt, H. Karten (1980)
Basal ganglionic pathways to the tectum: Studies in reptilesJournal of Comparative Neurology, 193
G. Paxinos (1985)
The Rat nervous system
Elizabeth Crosly, C. Herrick (1949)
The Brain of the Tiger Salamander.American Midland Naturalist, 41
L. Medina, A. Reiner (1997)
The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amineNeuroscience, 81
M. Davis, C. Shi (2000)
The amygdalaCurrent Biology, 10
S. Martinez, L. Puelles (2000)
Neurogenetic compartments of the mouse diencephalon and some characteristic gene expression patterns.Results and problems in cell differentiation, 30
L. Puelles, J. Rubenstein (1993)
Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organizationTrends in Neurosciences, 16
N. Montgomery, K. Fite, Zheng Li (1991)
Anatomical evidence for an intergeniculate leaflet in Rana pipiensNeuroscience Letters, 133
G. Penny, M. Conley, D. Schmechel, I. Diamond (1984)
The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbitJournal of Comparative Neurology, 228
C. Fode, Qiufu Ma, S. Casarosa, S. Ang, D. Anderson, F. Guillemot (2000)
A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons.Genes & development, 14 1
T. Stühmer, L. Puelles, M. Ekker, J. Rubenstein (2002)
Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons.Cerebral cortex, 12 1
(1988)
Forebrain auditory pathways in ranid frogs
O. Marín, J. Rubenstein (2001)
A long, remarkable journey: Tangential migration in the telencephalonNature Reviews Neuroscience, 2
Agustín González, Jesús López, C. Sánchez-Camacho, Oscar Marín (2002)
Regional expression of the homeobox gene NKX2-1 defines pallidal and interneuronal populations in the basal ganglia of amphibiansNeuroscience, 114
K. Anderson, A. Reiner (1990)
Extensive co‐occurrence of substance P and dynorphin in striatal projection neurons: An evolutionarily conserved feature of basal ganglia organizationJournal of Comparative Neurology, 295
E. Jones, S. Hendry (1986)
Co-localization of GABA and neuropeptides in neocortical neuronsTrends in Neurosciences, 9
L. Puelles (2001)
Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium.Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 356 1414
A. Reiner, K. Anderson (1990)
The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findingsBrain Research Reviews, 15
L. Medina, Elisa Martí, C. Artero, A. Fasolo, L. Puelles (1992)
Distribution of neuropeptide Y‐like immunoreactivity in the brain of the lizard Gallotia gallotiJournal of Comparative Neurology, 319
N. Papalopulu, C. Kintner (1993)
Xenopus Distal-less related homeobox genes are expressed in the developing forebrain and are induced by planar signals.Development, 117 3
J. Ricardo (1980)
Efferent connections of the subthalamic region in the rat. I. The subthalamic nucleus of luysBrain Research, 202
R. Northcutt, G. Royce (1975)
Olfactory bulb projections in the bullfrog Rana catesbeianaJournal of Morphology, 145
L. Bruce, T. Neary (1995)
The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations.Brain, behavior and evolution, 46 4-5
Agustín González, F. Russchen, A. Lohman (1990)
Afferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko.Brain, behavior and evolution, 36 1
I. Merchenthaler, G. Lázár, J. Maderdrut (1989)
Distribution of proenkephalin‐derived peptides in the brain of Rana esculentaJournal of Comparative Neurology, 281
W. Wilczynski, R. Northcutt (1983)
Connections of the bullfrog striatum: Efferent projectionsJournal of Comparative Neurology, 214
G. Lázár (1978)
Application of cobalt-filling technique to show retinal projections in the frogNeuroscience, 3
K. Fite, R. Carey, D. Vicario (1977)
Visual neurons in frog anterior thalamusBrain Research, 127
Inmaculada Cobos, K. Shimamura, J. Rubenstein, Salvador Martínez, L. Puelles (2001)
Fate map of the avian anterior forebrain at the four-somite stage, based on the analysis of quail-chick chimeras.Developmental biology, 239 1
O. Marín, W. Smeets, Agustín González (1998)
Evolution of the basal ganglia in tetrapods: a new perspective based on recent studies in amphibiansTrends in Neurosciences, 21
I. Bachy, J. Berthon, S. Rétaux (2002)
Defining pallial and subpallial divisions in the developing Xenopus forebrainMechanisms of Development, 117
M. Aller, Skirmantas Janušonis, K. Fite, A. Fernández‐López (1997)
Distribution of the GABAA receptor complex β2/3 subunits in the brain of the frog Rana pipiensNeuroscience Letters, 225
C. Veenman, A. Reiner (1994)
The distribution of GABA‐containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targetsJournal of Comparative Neurology, 339
L. Medina, A. Reiner (1995)
Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia.Brain, behavior and evolution, 46 4-5
S. Watt, X. Gu, Raymond Smith, N. Spitzer (2000)
Specific Frequencies of Spontaneous Ca2+ Transients Upregulate GAD 67 Transcripts in Embryonic Spinal NeuronsMolecular and Cellular Neuroscience, 16
Oscar Marín, Agustín González, W. Smeets (1997)
Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbensJournal of Comparative Neurology, 378
M. Dirksen, P. Mathers, M. Jamrich (1993)
Expression of a Xenopus Distal-less homeobox gene involved in forebrain and cranio-facial developmentMechanisms of Development, 41
Agustín González, W. Smeets (1991)
Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltliiJournal of Comparative Neurology, 303
M. Celio (1986)
Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex.Science, 231 4741
L. Bruce, T. Neary (1995)
Afferent projections to the lateral and dorsomedial hypothalamus in a lizard, Gekko gecko.Brain, behavior and evolution, 46 1
Anibal Fernandez, C. Pieau, J. Repérant, E. Boncinelli, M. Wassef (1998)
Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes.Development, 125 11
Luis Puelles (1995)
A segmental morphological paradigm for understanding vertebrate forebrains.Brain, behavior and evolution, 46 4-5
M. Franzoni, P. Morino (2004)
The distribution of GABA-like-immunoreactive neurons in the brain of the newt, Triturus cristatus carnifex, and the green frog, Rana esculentaCell and Tissue Research, 255
A. Garda, Luis Puelles, John Rubenstein, Loreta Medina (2002)
Expression patterns of Wnt8b and Wnt7b in the chicken embryonic brain suggest a correlation with forebrain patterning centers and morphogenesisNeuroscience, 113
C. Díaz, C. Yanes, C. Trujillo, L. Puelles (1994)
The lacteridian reticular thalamic nucleus projects topographically upon the dorsal thalamus: Experimental study in Gallotia gallotiJournal of Comparative Neurology, 343
Nils Holmgren (1922)
Points of view concerning forebrain morphology in lower vertebratesJournal of Comparative Neurology, 34
J. Gorski, Tiffany Talley, M. Qiu, L. Puelles, J. Rubenstein, K. Jones (2002)
Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing LineageThe Journal of Neuroscience, 22
J. Davila, M. Megias, A. Calle, S. Guirado (1993)
Subpopulations of GABA neurons containing somatostatin, neuropeptide Y, and parvalbumin in the dorsomedial cortex of the lizard Psammodromus algirusJournal of Comparative Neurology, 336
H. Wicht, W. Himstedt (1988)
Topologic and connectional analysis of the dorsal thalamus of Triturus alpestris (Amphibia, Urodela, Salamandridae)Journal of Comparative Neurology, 267
M. Siemen, H. Künzle (1994)
Connections of the basal telencephalic areas c and d in the turtle brainAnatomy and Embryology, 189
L. Medina, W. Smeets (1991)
Comparative aspects of the basal ganglia‐tectal pathways in reptilesJournal of Comparative Neurology, 308
G. Westhoff, G. Roth (2002)
Morphology and projection pattern of medial and dorsal pallial neurons in the frog Discoglossus pictus and the salamander Plethodon jordaniJournal of Comparative Neurology, 445
F. Martínez-Guijarro, E. Soriano, J. Río, J. Blasco-Ibáńez, C. López-García (1993)
Parvalbumin‐containing neurons in the cerebral cortex of the lizard Podarcis hispanica: Morphology, ultrastructure, and coexistence with GABA, somatostatin, and neuropeptide YJournal of Comparative Neurology, 336
J. Mitrofanis, Lilijana Mikuletic (1999)
Organisation of the cortical projection to the zona incerta of the thalamusJournal of Comparative Neurology, 412
G. Lázár, J. Maderdrut, S. Trasti, Zsolt Liposits, P. Tóth, T. Kozicz, I. Merchenthaler (1993)
Distribution of proneuropeptide Y‐derived peptides in the brain of Rana esculenta and Xenopus laevisJournal of Comparative Neurology, 327
M. Martı́nez-de-la-Torre, A. Garda, E. Puelles, L. Puelles (2002)
Gbx2 expression in the late embryonic chick dorsal thalamusBrain Research Bulletin, 57
S. Inagaki, E. Senba, Sadao Shiosaka, H. Takagi, Y. Kawai, K. Takatsuki, M. Sakanaka, T. Matsuzaki, M. Tohyama (1981)
Regional distribution of substance P‐like immunoreactivity in the frog brain and spinal cord: Immunohistochemical analysisJournal of Comparative Neurology, 201
L. Puelles (2001)
Brain segmentation and forebrain development in amniotesBrain Research Bulletin, 55
A. Bulfone, L. Puelles, M. Porteus, M. Frohman, G. Martin, J. Rubenstein (1993)
Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt- 3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries, 13
M. Price, Marianne Lemaistre, M. Pischetola, R. Lauro, D. Duboule (1991)
A mouse gene related to Distal-less shows a restricted expression in the developing forebrainNature, 351
F. Martínez-García, F. Olucha, V. Teruel, M. Lorente, W. Schwerdtfeger (1991)
Afferent and efferent connections of the olfactory bulbs in the lizard Podarcis hispanicaJournal of Comparative Neurology, 305
M. Pritz, M. Stritzel (1994)
Morphological and GAD immunocytochemical properties of the dorsal lateral geniculate nucleus in a reptileBrain Research Bulletin, 33
S. Pleasure, S. Anderson, R. Hevner, A. Bagri, O. Marín, D. Lowenstein, J. Rubenstein (2000)
Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic InterneuronsNeuron, 28
F. Scalia (1976)
Structure of the Olfactory and Accessory Olfactory Systems
L. Medina, A. Reiner (2000)
Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?Trends in Neurosciences, 23
A. Reiner, L. Medina, C. Veenman (1998)
Structural and functional evolution of the basal ganglia in vertebratesBrain Research Reviews, 28
L. Puelles, E. Kuwana, E. Puelles, A. Bulfone, K. Shimamura, Jerry Keleher, S. Smiga, J. Rubenstein (2000)
Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx‐2, Emx‐1, Nkx‐2.1, Pax‐6, and Tbr‐1Journal of Comparative Neurology, 424
G. Striedter (1997)
The telencephalon of tetrapods in evolution.Brain, behavior and evolution, 49 4
I Bachy, J Berthon, S Rétaux (2002)
Defining pallial and subpallial compartments in the developing Xenopus forebrain, 117
K. Shimamura, Shinji Hirano, Andy McMahon, M. Takeichi (1994)
Wnt-1-dependent regulation of local E-cadherin and alpha N-catenin expression in the embryonic mouse brain.Development, 120 8
A. Reiner, S. Brauth, H. Karten (1984)
Evolution of the amniote basal gangliaTrends in Neurosciences, 7
L. Puelles, M. Guillen, M. Martı́nez-de-la-Torre (2004)
Observations on the fate of nucleus superficialis magnocellularis of Rendahl in the avian diencephalon, bearing on the organization and nomenclature of neighboring retinorecipient nucleiAnatomy and Embryology, 183
B. Power, C. Kolmac, J. Mitrofanis (1999)
Evidence for a large projection from the zona incerta to the dorsal thalamusJournal of Comparative Neurology, 404
A. Reiner, H. Karten (1985)
Comparison of olfactory bulb projections in pigeons and turtles.Brain, behavior and evolution, 27 1
J. Rubenstein, Salvador Martínez, K. Shimamura, L. Puelles (1994)
The embryonic vertebrate forebrain: the prosomeric model.Science, 266 5185
Margarita Fox (1985)
Estructura del mesencéfalo y diencéfalo en aves y reptiles: aportaciones a una síntesis en la búsqueda de homología
R. Nieuwenhuys, H. Donkelaar, C. Nicholson (1997)
The Central Nervous System of Vertebrates
F. Scalia (1976)
The Optic Pathway of the Frog: Nuclear Organization and Connections
John Rubenstein, Salvador Perez, E. Torre (2000)
Patrón de expresión génica e histogénesis en la placa basal del prosencéfalo y mesencéfalo de aves / Eduardo Puelles Martínez de la Torre ; Directores, John L.R. Rubenstein, Salvador Martínez Pérez.
J. Werner
AnuransCRC Handbook of Census Methods for Terrestrial Vertebrates
Laura Bruce, T. Neary (1995)
Afferent projections to the ventromedial hypothalamic nucleus in a lizard, Gekko gecko.Brain, behavior and evolution, 46 1
O. Marín, W. Smeets, Agustín González (1998)
Basal ganglia organization in amphibians: ChemoarchitectureJournal of Comparative Neurology, 392
C. Kolmac, J. Mitrofanis (1999)
Distribution of various neurochemicals within the zona incerta: an immunocytochemical and histochemical studyAnatomy and Embryology, 199
C. Taban, M. Cathieni (1983)
Distribution of substance P‐like immunoreactivity in the brain of the newt (Triturus cristatus)Journal of Comparative Neurology, 216
M. Pombal, L. Puelles (1999)
Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, nissl stain, and ancillary markersJournal of Comparative Neurology, 414
F. Milán, L. Puelles (2000)
Patterns of calretinin, calbindin, and tyrosine‐hydroxylase expression are consistent with the prosomeric map of the frog diencephalonJournal of Comparative Neurology, 419
L. Wolpert (1997)
Principles of Development
J. Davila, S. Guirado, L. Puelles (2000)
Expression of calcium–binding proteins in the diencephalon of the lizard Psammodromus algirusJournal of Comparative Neurology, 427
F. Scalia (1972)
The projection of the accessory olfactory bulb in the frog.Brain research, 36 2
F. Scalia, K. Gregory (1970)
Retinofugal projections in the frog: location of the postsynaptic neurons.Brain, behavior and evolution, 3 1
M. Uchikawa, Y. Kamachi, H. Kondoh (1999)
Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chickenMechanisms of Development, 84
N. Aste, C. Viglietti‐Panzica, Aldo Fasolo, C. Andreone, H. Vaudry, Georges Pelletier, Giancarlo Panzica (1991)
Localization of neuropeptide Y-immunoreactive cells and fibres in the brain of the Japanese quailCell and Tissue Research, 265
R. Plackett (1974)
The analysis of categorical data
F. Martínez-García, A. Martínez-Marcos, E. Lanuza (2002)
The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structureBrain Research Bulletin, 57
F. Martínez-Guijarro, F. Martínez-Guijarro, T. Freund (1992)
Distribution of GABAergic interneurons immunoreactive for calretinin, calbindin D28K, and parvalbumin in the cerebral cortex of the lizard Podarcis hispanicaJournal of Comparative Neurology, 322
Agustín González, W. Smeets (1992)
Comparative analysis of the vasotocinergic and mesotocinergic cells and fibers in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltliiJournal of Comparative Neurology, 315
R. Granda, W. Crossland (1989)
GABA‐like immunoreactivity of neurons in the chicken diencephalon and mesencephalonJournal of Comparative Neurology, 287
S. Anderson, O. Marín, Carrie Horn, Kelly Jennings, J. Rubenstein (2001)
Distinct cortical migrations from the medial and lateral ganglionic eminences.Development, 128 3
C. Saper (1985)
Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projectionsJournal of Comparative Neurology, 237
C. Lois, J. García-Verdugo, A. Álvarez-Buylla (1996)
Chain Migration of Neuronal PrecursorsScience, 271
C. Naujoks‐Manteuffel, Ulrike Niemann (1994)
Microglial cells in the brain of Pleurodeles waltl (urodela, salamandridae) after wallerian degeneration in the primary visual system using Bandeiraea simplicifolia isolectin B4‐cytochemistryGlia, 10
C. Herrick (1933)
The amphibian forebrain. VI. NecturusJournal of Comparative Neurology, 58
J. Rio, J. Repérant, R. Ward, D. Miceli, M. Médina (1992)
Evidence of GABA-immunopositive neurons in the dorsal part of the lateral geniculate nucleus of reptiles: Morphological correlates with interneuronsNeuroscience, 47
H. Hoffman (1963)
The olfactory bulb, accessory olfactory bulb, and hemisphere of some anuransJournal of Comparative Neurology, 120
S. Anderson, D. Eisenstat, Leyuan Shi, J. Rubenstein (1997)
Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes.Science, 278 5337
M. Bennis, A. Calas, M. Geffard, H. Gamrani (1991)
Distribution of GABA immunoreactive systems in the forebrain and midbrain of the chameleonBrain Research Bulletin, 26
Yasuo, Kawaguchi (1993)
Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum, 13
J. Corbin, S. Nery, G. Fishell (2001)
Telencephalic cells take a tangent: non-radial migration in the mammalian forebrainNature Neuroscience, 4 Suppl 1
R. Northcutt, E. Kicliter (1980)
Organization of the Amphibian Telencephalon
O. Marín, A. González, W. Smeets (1997)
Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens.The Journal of comparative neurology, 380 1
We investigated whether γ‐amino butyric acidergic (GABAergic) cell populations correlate positionally with specific Dlx‐expressing histogenetic territories in an anamniote tetrapod, the frog Xenopus laevis. To that end, we cloned a fragment of Xenopus GAD67 gene (xGAD67, expressed in GABAergic neurons) and compared its expression with that of Distal‐less‐4 gene (xDll‐4, ortholog of mouse Dlx2) in the forebrain at late larval and adult stages. In Xenopus, GABAergic neurons were densely concentrated in xDll‐4–positive territories, such as the telencephalic subpallium, part of the hypothalamus, and ventral thalamus, where nearly all neurons expressed both genes. In contrast, the pallium of Xenopus generally contained dispersed neurons expressing xGAD67 or xDll‐4, which may represent local circuit neurons. As in amniotes, these pallial interneurons may have been produced in the subpallium and migrated tangentially into the pallium during development. In Xenopus, the ventral division of the classic lateral pallium contained extremely few GABAergic cells and showed only low signal of the pallial gene Emx1, suggesting that it may represent the amphibian ventral pallium, homologous to that of amniotes. At caudal forebrain levels, a number of GABAergic neurons was observed in several areas (dorsal thalamus, pretectum), but no correlation to xDll‐4 was observed there. The location of GABAergic neurons in the forebrain and their relation to the developmental regulatory genes Dll and Dlx were very similar in Xenopus and in amniotes. The close correlation in the expression of both genes in rostral forebrain regions supported the notion that Dll/Dlx are among the genes involved in the acquisition of the GABAergic phenotype. J. Comp. Neurol. 461:370–393, 2003. © 2003 Wiley‐Liss, Inc.
The Journal of Comparative Neurology – Wiley
Published: Jun 30, 2005
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.