Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans

The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans Temporal control of cell division is critical for proper animal development. To identify mechanisms involved in developmental arrest of cell division, we screened for cell-cycle mutants that disrupt the reproducible pattern of somatic divisions in the nematode C. elegans. Here, we show that the cdc-14 phosphatase is required for the quiescent state of specific precursor cells. Whereas budding yeast Cdc14p is essential for mitotic exit, inactivation of C. elegans cdc-14 resulted in extra divisions in multiple lineages, with no apparent defects in mitosis or cell-fate determination. CDC-14 fused to the green fluorescent protein (GFP–CDC-14) localized dynamically and accumulated in the cytoplasm during G1 phase. Genetic interaction and transgene expression studies suggest that cdc-14 functions upstream of the cki-1 Cip/Kip inhibitor to promote accumulation of CKI-1 in the nucleus. Our data support a model in which CDC-14 promotes a hypophosphorylated and stable form of CKI-1 required for developmentally programmed cell-cycle arrest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Cell Biology Springer Journals

The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans

Loading next page...
 
/lp/springer-journals/the-cdc-14-phosphatase-controls-developmental-cell-cycle-arrest-in-c-VdBee7CrTg

References (39)

Publisher
Springer Journals
Copyright
Copyright © 2004 by Nature Publishing Group
Subject
Life Sciences; Life Sciences, general; Cell Biology; Cancer Research; Developmental Biology; Stem Cells
ISSN
1465-7392
eISSN
1476-4679
DOI
10.1038/ncb1154
Publisher site
See Article on Publisher Site

Abstract

Temporal control of cell division is critical for proper animal development. To identify mechanisms involved in developmental arrest of cell division, we screened for cell-cycle mutants that disrupt the reproducible pattern of somatic divisions in the nematode C. elegans. Here, we show that the cdc-14 phosphatase is required for the quiescent state of specific precursor cells. Whereas budding yeast Cdc14p is essential for mitotic exit, inactivation of C. elegans cdc-14 resulted in extra divisions in multiple lineages, with no apparent defects in mitosis or cell-fate determination. CDC-14 fused to the green fluorescent protein (GFP–CDC-14) localized dynamically and accumulated in the cytoplasm during G1 phase. Genetic interaction and transgene expression studies suggest that cdc-14 functions upstream of the cki-1 Cip/Kip inhibitor to promote accumulation of CKI-1 in the nucleus. Our data support a model in which CDC-14 promotes a hypophosphorylated and stable form of CKI-1 required for developmentally programmed cell-cycle arrest.

Journal

Nature Cell BiologySpringer Journals

Published: Jul 11, 2004

There are no references for this article.