Access the full text.
Sign up today, get DeepDyve free for 14 days.
G. Eperon, V. Burlakov, P. Docampo, A. Goriely, H. Snaith (2014)
Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar CellsAdvanced Functional Materials, 24
G. Eperon, S. Stranks, C. Menelaou, M. Johnston, L. Herz, H. Snaith (2014)
Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy and Environmental Science, 7
V. D'innocenzo, G. Grancini, M. Alcocer, A. Kandada, S. Stranks, Michael Lee, G. Lanzani, H. Snaith, A. Petrozza (2014)
Excitons versus free charges in organo-lead tri-halide perovskitesNature Communications, 5
J. Ball, Michael Lee, Andrew Hey, H. Snaith (2013)
Low-temperature processed meso-superstructured to thin-film perovskite solar cellsEnergy and Environmental Science, 6
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka (2009)
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.Journal of the American Chemical Society, 131 17
S. Chu, A. Majumdar (2012)
Opportunities and challenges for a sustainable energy futureNature, 488
E. Edri, Saar Kirmayer, D. Cahen, G. Hodes (2013)
High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.The journal of physical chemistry letters, 4 6
C. Kagan, D. Mitzi, C. Dimitrakopoulos (1999)
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistorsScience, 286 5441
B. Conings, L. Baeten, C. Dobbelaere, J. D’Haen, J. Manca, H. Boyen (2014)
Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich ApproachAdvanced Materials, 26
P. Nayak, D. Cahen (2014)
Updated Assessment of Possibilities and Limits for Solar CellsAdvanced Materials, 26
O. Malinkiewicz, A. Yella, Yong Lee, G. Espallargas, M. Graetzel, M. Nazeeruddin, H. Bolink (2013)
Perovskite solar cells employing organic charge-transport layersNature Photonics, 8
H. Němec, P. Kužel, V. Sundström (2009)
Far-infrared response of free charge carriers localized in semiconductor nanoparticlesPhysical Review B, 79
(2012)
Nanoscale, 2011, 3, 4088-4093
A. Abate, Derek Hollman, J. Teuscher, S. Pathak, R. Avolio, G. D’Errico, G. Vitiello, S. Fantacci, H. Snaith (2013)
Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells.Journal of the American Chemical Society, 135 36
R. Ulbricht, E. Hendry, J. Shan, T. Heinz, M. Bonn (2011)
Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopyReviews of Modern Physics, 83
E. Hendry, M. Koeberg, B. O'Regan, M. Bonn (2006)
Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy.Nano letters, 6 4
C. Wehrenfennig, G. Eperon, M. Johnston, H. Snaith, L. Herz (2013)
High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide PerovskitesAdvanced Materials (Deerfield Beach, Fla.), 26
(2013)
N . R . E . L . ( NREL ) , NREL
H. Nienhuys, V. Sundström (2005)
Intrinsic complications in the analysis of optical-pump, terahertz probe experimentsPhysical Review B, 71
Y. Ogomi, A. Morita, S. Tsukamoto, Takahiro Saitho, Naotaka Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. Pandey, T. Ma, S. Hayase (2014)
CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm.The journal of physical chemistry letters, 5 6
P. Nayak, J. Bisquert, D. Cahen (2011)
Assessing Possibilities and Limits for Solar CellsAdvanced Materials, 23
A. Yella, Hsuan‐Wei Lee, H. Tsao, C. Yi, A. Chandiran, Md. Nazeeruddin, E. Diau, C. Yeh, S. Zakeeruddin, M. Grätzel (2011)
Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent EfficiencyScience, 334
M. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop (2014)
Solar cell efficiency tables (version 43)Progress in Photovoltaics: Research and Applications, 22
C. Stoumpos, C. Malliakas, M. Kanatzidis (2013)
Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorganic chemistry, 52 15
J. Im, Chang-Ryul Lee, Jin‐Wook Lee, Sang-Won Park, N. Park (2011)
6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale, 3 10
S. Stranks, G. Eperon, G. Grancini, C. Menelaou, M. Alcocer, T. Leijtens, L. Herz, A. Petrozza, H. Snaith (2013)
Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite AbsorberScience, 342
Mingzhen Liu, M. Johnston, H. Snaith (2013)
Efficient planar heterojunction perovskite solar cells by vapour depositionNature, 501
MD KINAMI, I. Miyazaki, Mdi
AND T
C. Wehrenfennig, Mingzhen Liu, H. Snaith, M. Johnston, L. Herz (2014)
Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx.The journal of physical chemistry letters, 5 8
Michael Saliba, K. Tan, Hiroaki Sai, D. Moore, T. Scott, Wei Zhang, L. Estroff, U. Wiesner, H. Snaith (2014)
Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide PerovskitesJournal of Physical Chemistry C, 118
Yukari Takahashi, H. Hasegawa (2013)
Hall mobility in tin iodide perovskite CH{sub 3}NH{sub 3}SnI{sub 3}: Evidence for a doped semiconductorJournal of Solid State Chemistry, 205
Yukari Takahashi, R. Obara, Zheng-zhong Lin, Yukihiro Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura (2011)
Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity.Dalton transactions, 40 20
T. Leijtens, Beat Lauber, G. Eperon, S. Stranks, H. Snaith (2014)
The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells.The journal of physical chemistry letters, 5 7
Michael Lee, J. Teuscher, T. Miyasaka, T. Murakami, H. Snaith (2012)
Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide PerovskitesScience, 338
J. Noh, S. Im, J. Heo, T. Mandal, S. Seok (2013)
Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.Nano letters, 13 4
K. Tan, D. Moore, Michael Saliba, Hiroaki Sai, L. Estroff, T. Hanrath, H. Snaith, Ulrich Wiesner (2014)
Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar CellsACS Nano, 8
H. Snaith (2010)
Estimating the Maximum Attainable Efficiency in Dye‐Sensitized Solar CellsAdvanced Functional Materials, 20
J. Chang, S. Im, Yong Lee, Hi-jung Kim, Choong‐Sun Lim, J. Heo, S. Seok (2012)
Panchromatic photon-harvesting by hole-conducting materials in inorganic-organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels.Nano letters, 12 4
D. Mitzi, C. Feild, Z. Schlesinger, R. Laibowitz (1995)
Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3IEEE Journal of Solid-state Circuits, 114
J. Burschka, N. Pellet, S. Moon, R. Humphry‐Baker, P. Gao, M. Nazeeruddin, M. Grätzel (2013)
Sequential deposition as a route to high-performance perovskite-sensitized solar cellsNature, 499
W. Shockley, H. Queisser (1961)
Detailed Balance Limit of Efficiency of p‐n Junction Solar CellsJournal of Applied Physics, 32
S. Wolf, J. Holovský, S. Moon, P. Löper, B. Niesen, M. Ledinský, F. Haug, Jun‐Ho Yum, C. Ballif (2014)
Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance.The journal of physical chemistry letters, 5 6
(2012)
Advanced Materials, 2014, 26, 728-733
A. Kronemeijer, V. Pecunia, D. Venkateshvaran, M. Nikolka, A. Sadhanala, J. Moriarty, M. Szumilo, H. Sirringhaus (2013)
Two-Dimensional Carrier Distribution in Top-Gate Polymer Field-Effect Transistors: Correlation between Width of Density of Localized States and Urbach EnergyAdvanced Materials (Deerfield Beach, Fla.), 26
G. Xing, N. Mathews, Shuangyong Sun, Swee Lim, Y. Lam, M. Grätzel, S. Mhaisalkar, T. Sum (2013)
Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3Science, 342
Already exhibiting solar to electrical power conversion efficiencies of over 17%, organic–inorganic lead halide perovskite solar cells are one of the most promising emerging contenders in the drive to provide a cheap and clean source of energy. One concern however, is the potential toxicology issue of lead, a key component in the archetypical material. The most likely substitute is tin, which like lead, is also a group 14 metal. While organic–inorganic tin halide perovskites have shown good semiconducting behaviour, the instability of tin in its 2+ oxidation state has thus far proved to be an overwhelming challenge. Here, we report the first completely lead-free, CH3NH3SnI3 perovskite solar cell processed on a mesoporous TiO2 scaffold, reaching efficiencies of over 6% under 1 sun illumination. Remarkably, we achieve open circuit voltages over 0.88 V from a material which has a 1.23 eV band gap.
Energy & Environmental Science – Royal Society of Chemistry
Published: Aug 13, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.