Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov.

Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying... Six strains of denitrifying bacteria isolated from various oxic and anoxic habitats on different monocyclic aromatic substrates were characterized by sequencing 16S rRNA genes, determining physiological and morphological traits, and DNA-DNA hybridization. According to these criteria, strains S100, SP and LG356 were identified as members of Thauera aromatica. Strains B5–1 and B5–2 were tentatively affiliated to the species Azoarcus tolulyticus. Strains B4P and S2 were only distantly related to each other and to other described Thauera species. These two strains are proposed as the type strains of two new species, Thauera phenylacetica sp. nov. and Thauera aminoaromatica sp. nov., respectively. By 16S rRNA gene analysis, strain U120 was highly related to the type strains of Azoarcus evansii and Azoarcus anaerobius, whereas corresponding DNA-DNA reassociation values indicated only a low degree of genomic relatedness. Based upon a low DNA similarity value and the presence of distinguishing physiological properties, strain U120 is proposed as the type strain of a new species, Azoarcus buckelii sp. nov. Almost all of the new isolates were obtained with different substrates. The highly varied substrate spectra of the isolates indicates that an even higher diversity of denitrifying bacteria degrading aromatic compounds would be discovered in the different habitats by using a larger spectrum of aromatic substrates for enrichment and isolation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Microbiology Springer Journals

Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov.

Loading next page...
 
/lp/springer-journals/phylogenetic-and-metabolic-diversity-of-bacteria-degrading-aromatic-WZe9ZBFb0m

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Life Sciences; Microbiology; Microbial Ecology; Biochemistry, general; Cell Biology; Biotechnology; Ecology
ISSN
0302-8933
eISSN
1432-072X
DOI
10.1007/s00203-002-0422-6
pmid
12070766
Publisher site
See Article on Publisher Site

Abstract

Six strains of denitrifying bacteria isolated from various oxic and anoxic habitats on different monocyclic aromatic substrates were characterized by sequencing 16S rRNA genes, determining physiological and morphological traits, and DNA-DNA hybridization. According to these criteria, strains S100, SP and LG356 were identified as members of Thauera aromatica. Strains B5–1 and B5–2 were tentatively affiliated to the species Azoarcus tolulyticus. Strains B4P and S2 were only distantly related to each other and to other described Thauera species. These two strains are proposed as the type strains of two new species, Thauera phenylacetica sp. nov. and Thauera aminoaromatica sp. nov., respectively. By 16S rRNA gene analysis, strain U120 was highly related to the type strains of Azoarcus evansii and Azoarcus anaerobius, whereas corresponding DNA-DNA reassociation values indicated only a low degree of genomic relatedness. Based upon a low DNA similarity value and the presence of distinguishing physiological properties, strain U120 is proposed as the type strain of a new species, Azoarcus buckelii sp. nov. Almost all of the new isolates were obtained with different substrates. The highly varied substrate spectra of the isolates indicates that an even higher diversity of denitrifying bacteria degrading aromatic compounds would be discovered in the different habitats by using a larger spectrum of aromatic substrates for enrichment and isolation.

Journal

Archives of MicrobiologySpringer Journals

Published: Jul 20, 2002

There are no references for this article.