Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Haverkamp, H. Wässle (2000)
Immunocytochemical analysis of the mouse retinaJournal of Comparative Neurology, 424
Wei Li, Joyce Keung, S. Massey (2004)
Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retinaJournal of Comparative Neurology, 474
R. Smith, M. Freed, P. Sterling (1986)
Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network, 6
K. Ghosh, S. Bujan, S. Haverkamp, A. Feigenspan, H. Wässle (2004)
Types of bipolar cells in the mouse retinaJournal of Comparative Neurology, 469
Y. Tsukamoto, K. Morigiwa, Mika Ueda, P. Sterling (2001)
Microcircuits for Night Vision in Mouse RetinaThe Journal of Neuroscience, 21
E. Soucy, Yanshu Wang, S. Nirenberg, J. Nathans, M. Meister (1998)
A Novel Signaling Pathway from Rod Photoreceptors to Ganglion Cells in Mammalian RetinaNeuron, 21
S. DeVries (2000)
Bipolar Cells Use Kainate and AMPA Receptors to Filter Visual Information into Separate ChannelsNeuron, 28
Ralph Nelson (1977)
Cat cones have rod input: A comparison of the response properties of cones and horizontal cell bodies in the retina of the catJournal of Comparative Neurology, 172
B. Völgyi, Michael Deans, D. Paul, S. Bloomfield (2004)
Convergence and Segregation of the Multiple Rod Pathways in Mammalian RetinaThe Journal of Neuroscience, 24
Wenzhi Sun, Ning Li, Shigang He (2002)
Large‐scale morphological survey of mouse retinal ganglion cellsJournal of Comparative Neurology, 451
H. Kolb, E. Famigilietti (1974)
Rod and Cone Pathways in the Inner Plexiform Layer of Cat RetinaScience, 186
H. Wässle, H. Riemann (1978)
The mosaic of nerve cells in the mammalian retinaProceedings of the Royal Society of London. Series B. Biological Sciences, 200
J. Kong, D. Fish, R. Rockhill, R. Masland (2005)
Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limitsJournal of Comparative Neurology, 489
E. Famiglietti, H. Kolb (1975)
A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retinaBrain Research, 84
S. Haverkamp, U. Grünert, H. Wässle (2001)
Localization of kainate receptors at the cone pedicles of the primate retinaJournal of Comparative Neurology, 436
I. Hack, Moritz Frech, O. Dick, L. Peichl, J. Brandstätter (2001)
Heterogeneous distribution of AMPA glutamate receptor subunits at the photoreceptor synapses of rodent retinaEuropean Journal of Neuroscience, 13
M. Slaughter, Robert Miller (1981)
2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research.Science, 211 4478
(1993)
Rod and cone inputs into bipolar cells in the rat retina [ abstract 1387 ]
Frank Müller, Heinz Wässle, T. Voigt (1988)
Pharmacological modulation of the rod pathway in the cat retina.Journal of neurophysiology, 59 6
Thomas Euler, H. Schneider, H. Wässle (1996)
Glutamate Responses of Bipolar Cells in a Slice Preparation of the Rat RetinaThe Journal of Neuroscience, 16
R. Dacheux, E. Raviola (1986)
The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell, 6
D. Ramponi, Anthony Good (2023)
Perilunate and Lunate DislocationsAdvanced Emergency Nursing Journal, 45
Y. Nakajima, H. Iwakabe, C. Akazawa, H. Nawa, R. Shigemoto, N. Mizuno, S. Nakanishi (1993)
Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate.The Journal of biological chemistry, 268 16
Thomas Euler, H. Wässle (1995)
Immunocytochemical identification of cone bipolar cells in the rat retinaJournal of Comparative Neurology, 361
B. Boycott, Heinz Wässle (1991)
Morphological Classification of Bipolar Cells of the Primate RetinaEuropean Journal of Neuroscience, 3
D. Vaney, J. Nelson, D. Pow (1998)
Neurotransmitter Coupling through Gap Junctions in the RetinaThe Journal of Neuroscience, 18
S. DeVries, Wei Li, S. Saszik (2006)
Parallel Processing in Two Transmitter Microenvironments at the Cone Photoreceptor SynapseNeuron, 50
R. Srivastava, Y. Lee, K. Noguchi, Y. Park, M. Ellis, J. Jeong, S. Kim, Y. Cho‐Chung (1998)
The RIIbeta regulatory subunit of protein kinase A binds to cAMP response element: an alternative cAMP signaling pathway.Proceedings of the National Academy of Sciences of the United States of America, 95 12
S. Massey, S. Mills (1996)
A calbindin‐immunoreactive cone bipolar cell type in the rabbit retinaJournal of Comparative Neurology, 366
F. Müller, Alexander Scholten, E. Ivanova, S. Haverkamp, E. Kremmer, U. Kaupp (2003)
HCN channels are expressed differentially in retinal bipolar cells and concentrated at synaptic terminalsEuropean Journal of Neuroscience, 17
H. Kolb (1977)
The organization of the outer plexiform layer in the retina of the cat: electron microscopic observationsJournal of Neurocytology, 6
H. Wässle, Ulrike Grüunert, Myung Chun, B. Boycott (1995)
The rod pathway of the macaque monkey retina: Identification of AII‐amacrine cells with antibodies against calretininJournal of Comparative Neurology, 361
JF Muller, PD Lucasiewicz, MS Silverman (1993)
Rod and cone inputs into bipolar cells in the rat retina, 34
C. Jeon, E. Strettoi, R. Masland (1998)
The Major Cell Populations of the Mouse RetinaThe Journal of Neuroscience, 18
Guo-yong Wang (2006)
Unique functional properties of the APB sensitive and insensitive rod pathways signaling light decrements in mouse retinal ganglion cellsVisual Neuroscience, 23
H. Young, D. Vaney (1991)
Rod‐signal interneurons in the rabbit retina: 1. Rod bipolar cellsJournal of Comparative Neurology, 310
S. DeVries, D. Baylor (1995)
An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina.Proceedings of the National Academy of Sciences of the United States of America, 92 23
E. Raviola, N. Gilula (1973)
Gap junctions between photoreceptor cells in the vertebrate retina.Proceedings of the National Academy of Sciences of the United States of America, 70 6
H. Wässle, M. Yamashita, U. Greferath, U. Grünert, F. Müller (1991)
The rod bipolar cell of the mammalian retinaVisual Neuroscience, 7
B. Fyk-Kolodziej, P. Qin, R. Pourcho (2003)
Identification of a cone bipolar cell in cat retina which has input from both rod and cone photoreceptorsJournal of Comparative Neurology, 464
R. Dacheux, E. Raviola (1982)
Horizontal cells in the retina of the rabbit, 2
S. Haverkamp, K. Ghosh, A. Hirano, H. Wässle (2003)
Immunocytochemical description of five bipolar cell types of the mouse retinaJournal of Comparative Neurology, 455
F. Haeseleer, I. Sokal, C. Verlinde, H. Erdjument-Bromage, P. Tempst, A. Pronin, J. Benovic, R. Fariss, K. Palczewski (2000)
Five Members of a Novel Ca2+-binding Protein (CABP) Subfamily with Similarity to Calmodulin*The Journal of Biological Chemistry, 275
E. Ivanova, F. Müller (2006)
Retinal bipolar cell types differ in their inventory of ion channelsVisual Neuroscience, 23
E. Ivanova, U. Müller, H. Wässle (2006)
Characterization of the glycinergic input to bipolar cells of the mouse retinaEuropean Journal of Neuroscience, 23
D. Protti, Nicolas Flores-Herr, Wei Li, S. Massey, H. Wässle (2005)
Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study.Journal of neurophysiology, 93 6
B. Lin, R. Masland (2005)
Synaptic contacts between an identified type of ON cone bipolar cell and ganglion cells in the mouse retinaEuropean Journal of Neuroscience, 21
H. Wässle (2004)
Parallel processing in the mammalian retinaNature Reviews Neuroscience, 5
T. Badea, J. Nathans (2004)
Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporterJournal of Comparative Neurology, 480
G. Feng, Rebecca Mellor, M. Bernstein, C. Keller-Peck, Q. Nguyen, Mia Wallace, J. Nerbonne, J. Lichtman, J. Sanes (2000)
Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFPNeuron, 28
I. Hack, L. Peichl, J. Brandstätter (1999)
An alternative pathway for rod signals in the rodent retina: rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors.Proceedings of the National Academy of Sciences of the United States of America, 96 24
BB Boycott, H Wässle (1991)
Morphological classification of bipolar cells in the macaque monkey retina, 3
The mammalian retina provides several pathways to relay the information from the photoreceptors to the ganglion cells. Cones feed into ON and OFF cone bipolar cells that excite ON and OFF ganglion cells, respectively. In the “classical” rod pathway, rods feed into rod bipolar cells that provide input to both the ON and the OFF pathway via AII amacrine cells. Recent evidence suggests an alternative rod pathway in which rods directly contact some types of OFF cone bipolar cells. The mouse has become an important model system for retinal research. We performed an immunohistochemical analysis on the level of light and electron microscopy to identify the bipolar cells and ganglion cells that are involved in the alternative rod pathway of the mouse retina. 1) We identify a new bipolar cell type, showing that type 3 OFF cone bipolar cells comprise two distinct cell types, that we termed 3a and 3b. Type 3a cells express the ion channel HCN4. Type 3b bipolar cells represent a hitherto unknown cell type that can be identified with antibodies against the regulatory subunit RIIβ of protein kinase A. 2) We show that both 3a and 3b cells form flat contacts at cone pedicles and rod spherules. 3) Finally, we identify an OFF ganglion cell type whose dendrites costratify with type 3a and 3b bipolar cell axon terminals. These newly identified cell types represent the basis of a neuronal circuit in the mammalian retina that could provide for an alternative fast rod pathway. J. Comp. Neurol. 502:1123–1137, 2007. © 2007 Wiley‐Liss, Inc.
The Journal of Comparative Neurology – Wiley
Published: Aug 20, 2008
Keywords: ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.