Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Immunocytolocalization of Plasma Membrane H+-ATPase

Immunocytolocalization of Plasma Membrane H+-ATPase Abstract The localization of plasma membrane H+-ATPase has been studied at the optical microscope level utilizing frozen and paraffin sections of Avena sativa and Pisum sativum, specific anti-ATPase polyclonal antibody, and second antibody coupled to alkaline phosphatase. In leaves and stems the ATPase is concentrated at the phloem, supporting the notion that it generates the driving force for phloem loading. In roots the ATPase is concentrated at both the periphery (rootcap and epidermis) and at the central cylinder, including endodermis and vascular cells. This supports a `two-pump' mechanism for ion absorption, involving active uptake at the epidermis, symplast transport across the cortex, and active efflux at the xylem. The low ATPase content of root meristem and elongation zone may explain the observed transorgan H+ currents, which leave nongrowing parts and enter growing tips. 1 Present address: Instituto de Recursos Naturales y Agrobiologia, Avda. Reina Mercedes s/n, 41080 Sevilla, Spain. This content is only available as a PDF. © 1990 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Immunocytolocalization of Plasma Membrane H+-ATPase

Loading next page...
 
/lp/oxford-university-press/immunocytolocalization-of-plasma-membrane-h-atpase-WyOO52ksk2

References (24)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.93.4.1654
Publisher site
See Article on Publisher Site

Abstract

Abstract The localization of plasma membrane H+-ATPase has been studied at the optical microscope level utilizing frozen and paraffin sections of Avena sativa and Pisum sativum, specific anti-ATPase polyclonal antibody, and second antibody coupled to alkaline phosphatase. In leaves and stems the ATPase is concentrated at the phloem, supporting the notion that it generates the driving force for phloem loading. In roots the ATPase is concentrated at both the periphery (rootcap and epidermis) and at the central cylinder, including endodermis and vascular cells. This supports a `two-pump' mechanism for ion absorption, involving active uptake at the epidermis, symplast transport across the cortex, and active efflux at the xylem. The low ATPase content of root meristem and elongation zone may explain the observed transorgan H+ currents, which leave nongrowing parts and enter growing tips. 1 Present address: Instituto de Recursos Naturales y Agrobiologia, Avda. Reina Mercedes s/n, 41080 Sevilla, Spain. This content is only available as a PDF. © 1990 American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Aug 1, 1990

There are no references for this article.