Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Ong, T. Ohtake, C. Brandt, I. Strickland, M. Boguniewicz, T. Ganz, R. Gallo, D. Leung (2002)
Endogenous antimicrobial peptides and skin infections in atopic dermatitis.The New England journal of medicine, 347 15
M. Rosetto, Y. Engström, C. Baldari, J. Telford, D. Hultmark (1995)
Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line.Biochemical and biophysical research communications, 209 1
M. Murakami, T. Ohtake, R. Dorschner, R. Gallo (2002)
Cathelicidin Antimicrobial Peptides are Expressed in Salivary Glands and SalivaJournal of Dental Research, 81
D. Hultmark, H. Steiner, T. Rasmuson, H. Boman (2005)
Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia.European journal of biochemistry, 106 1
H. Boman (1998)
Gene‐Encoded Peptide Antibiotics and the Concept of Innate Immunity: An Update ReviewScandinavian Journal of Immunology, 48
D. Andreu, C. Carreño, C. Linde, H. Boman, M. Andersson (1999)
Identification of an anti-mycobacterial domain in NK-lysin and granulysin.The Biochemical journal, 344 Pt 3
G. Gudmundsson, D. Lidholm, B. Åsling, R. Gan, H. Boman (1991)
The cecropin locus. Cloning and expression of a gene cluster encoding three antibacterial peptides in Hyalophora cecropia.The Journal of biological chemistry, 266 18
E. Porter, C. Bevins, D. Ghosh, T. Ganz (2002)
The multifaceted Paneth cellCellular and Molecular Life Sciences CMLS, 59
D. Islam, L. Bandholtz, J. Nilsson, H. Wigzell, B. Christensson, B. Agerberth, G. Gudmundsson (2001)
Downregulation of bactericidal peptides in enteric infections: A novel immune escape mechanism with bacterial DNA as a potential regulatorNature Medicine, 7
S. Gamen, Dennis Hanson, Allan Kaspar, Javier Naval, A. Krensky, A. Anel (1998)
Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways.Journal of immunology, 161 4
D. Andreu, J. Ubach, A. Boman, B. Wåhlin, D. Wade, R. Merrifield, H. Boman (1992)
Shortened cecropin A‐melittin hybrids Significant size reduction retains potent antibiotic activityFEBS Letters, 296
D. Kang, Gang Liu, A. Lundström, E. Gelius, H. Steiner (1998)
A peptidoglycan recognition protein in innate immunity conserved from insects to humans.Proceedings of the National Academy of Sciences of the United States of America, 95 17
Robert Hong, M. Shchepetov, J. Weiser, P. Axelsen (2003)
Transcriptional Profile of the Escherichia coli Response to the Antimicrobial Insect Peptide Cecropin AAntimicrobial Agents and Chemotherapy, 47
H. Boman, I. Nilsson, B. Rasmuson (1972)
Inducible Antibacterial Defence System in DrosophilaNature, 237
Christopher Miller (2002)
Guns, Germs, and Steel. The Fate of Human Societies, 56
Jong-Youn Lee, A. Boman, Chuanxin Sun, Mats AnderssonT, H. Jornvall, Viktor MUTTt, H. Boman (1989)
Antibacterial peptides from pig intestine: isolation of a mammalian cecropin.Proceedings of the National Academy of Sciences of the United States of America, 86 23
R. Gallo, M. Ono, T. Povsic, C. Page, E. Eriksson, M. Klagsbrun, M. Bernfield (1994)
Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds.Proceedings of the National Academy of Sciences of the United States of America, 91 23
R. Merrifield, P. Juvvadi, D. Andreu, J. Ubach, A. Boman, H. Boman (1995)
Retro and retroenantio analogs of cecropin-melittin hybrids.Proceedings of the National Academy of Sciences of the United States of America, 92
M. Dushay, B. Åsling, D. Hultmark (1996)
Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila.Proceedings of the National Academy of Sciences of the United States of America, 93 19
M. Frohm, B. Agerberth, G. Ahangari, M. Ståhle-Bäckdahl, S. Lidén, H. Wigzell, G. Gudmundsson (1997)
The Expression of the Gene Coding for the Antibacterial Peptide LL-37 Is Induced in Human Keratinocytes during Inflammatory Disorders*The Journal of Biological Chemistry, 272
M. Zanetti, R. Gennaro, B. Skerlavaj, L. Tomasinsig, R. Circo (2002)
Cathelicidin peptides as candidates for a novel class of antimicrobials.Current pharmaceutical design, 8 9
J. Larrick, M. Hirata, R. Balint, Jaehag Lee, J. Zhong, S. Wright (1995)
Human CAP18: a novel antimicrobial lipopolysaccharide-binding proteinInfection and Immunity, 63
Richard Gallo, Richard Gallo, Kenneth Huttner (1998)
Antimicrobial peptides: an emerging concept in cutaneous biology.The Journal of investigative dermatology, 111 5
H. Boman (2000)
Innate immunity and the normal microfloraImmunological Reviews, 173
E. Andersson, Ole Sørensen, B. Frohm, N. Borregaard, Arne Egesten, Johan Malm (2002)
Isolation of human cationic antimicrobial protein-18 from seminal plasma and its association with prostasomes.Human reproduction, 17 10
H. Boman (1991)
Antibacterial peptides: Key components needed in immunityCell, 65
P. Fehlbaum, M. Rao, M. Zasloff, G. Anderson (2000)
An essential amino acid induces epithelial β-defensin expressionProceedings of the National Academy of Sciences of the United States of America, 97
A. Radzicka, R. Wolfenden (1988)
Comparing the polarities of the amino acids: side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solutionBiochemistry, 27
G. Christophides, E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. Brey, F. Collins, A. Danielli, G. Dimopoulos, C. Hétru, N. Hoa, J. Hoffmann, S. Kanzok, Ivica Letunic, E. Levashina, T. Loukeris, G. Lycett, S. Meister, K. Michel, L. Moita, H. Müller, M. Osta, S. Paskewitz, J. Reichhart, A. Rzhetsky, L. Troxler, K. Vernick, D. Vlachou, Jennifer Volz, C. Mering, Jiannong Xu, Liangbiao Zheng, P. Bork, F. Kafatos (2002)
Immunity-Related Genes and Gene Families in Anopheles gambiaeScience, 298
B. Schutte, J. Mitros, J. Bartlett, Jesse Walters, H. Jia, M. Welsh, T. Casavant, P. McCray (2002)
Discovery of five conserved β-defensin gene clusters using a computational search strategyProceedings of the National Academy of Sciences of the United States of America, 99
K. Hase, L. Eckmann, John Leopard, N. Varki, M. Kagnoff (2002)
Cell Differentiation Is a Key Determinant of Cathelicidin LL-37/Human Cationic Antimicrobial Protein 18 Expression by Human Colon EpitheliumInfection and Immunity, 70
C. Bevins (2003)
Antimicrobial peptides as effector molecules of mammalian host defense.Contributions to microbiology, 10
D. Schibli, H. Hunter, V. Aseyev, T. Starner, J. Wiencek, P. McCray, B. Tack, H. Vogel (2002)
The Solution Structures of the Human β-Defensins Lead to a Better Understanding of the Potent Bactericidal Activity of HBD3 against Staphylococcus aureus *The Journal of Biological Chemistry, 277
B. Agerberth, J. Charo, J. Werr, B. Olsson, F. Idali, L. Lindbom, R. Kiessling, H. Jörnvall, H. Wigzell, G. Gudmundsson (2000)
The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations.Blood, 96 9
N. Yount, Jun Yuan, Alan Tarver, Tammy Castro, Gill Diamond, Patti Tran, J. Levy, Cheryl McCullough, James Cullor, Charles Bevins, M. Selsted (1999)
Cloning and expression of bovine neutrophil beta-defensins. Biosynthetic profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules.The Journal of biological chemistry, 274 37
Gudmundur Gudmundsson, Kristin Magnusson, B. Chowdhary, M. Johansson, Leif Andersson, Hans Boman (1995)
Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39.Proceedings of the National Academy of Sciences of the United States of America, 92 15
E. Porter, M. Poles, Jenny Lee, J. Naitoh, C. Bevins, T. Ganz (1998)
Isolation of human intestinal defensins from ileal neobladder urineFEBS Letters, 434
H. Jia, B. Schutte, A. Schudy, R. Linzmeier, J. Guthmiller, G. Johnson, B. Tack, J. Mitros, A. Rosenthal, T. Ganz, P. McCray (2001)
Discovery of new human β-defensins using a genomics-based approachGene, 263
R. Lehrer, T. Ganz (2002)
Defensins of vertebrate animals.Current opinion in immunology, 14 1
Jian Li, M. Post, R. Volk, Youhe Gao, Min Li, C. Métais, Kaori Sato, J. Tsai, W. Aird, R. Rosenberg, T. Hampton, Jianyi Li, F. Sellke, P. Carmeliet, M. Simons (2000)
PR39, a peptide regulator of angiogenesisNature Medicine, 6
Hong Jiaa, Brian Schuttea, Andreas Schudye, Rose Linzmeierf, Janet, M. Guthmillerd, Georgia Johnsond, Brian Tackc, Joseph Mitrosa, Andre Rosenthale, Tomas Ganzf, Paul Jra (2001)
Discovery of new human beta-defensins using a genomics-based approach.Gene, 263 1-2
A. Ouellette, C. Bevins (2001)
Paneth cell defensins and innate immunity of the small bowel.Inflammatory bowel diseases, 7 1
Hans Boman, I. Boman, David Andreu, Zong-qu Li, R. Merrifield, Gabriel Schlenstedt, Richard Zimmermann (1989)
Chemical synthesis and enzymic processing of precursor forms of cecropins A and B.The Journal of biological chemistry, 264 10
P. Hofsten, I. Faye, K. Kockum, J. Lee, K. Xanthopoulos, I. Boman, H. Boman, A. Engström, D. Andreu, R. Merrifield (1985)
Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia.Proceedings of the National Academy of Sciences of the United States of America, 82 8
Lehrer Lehrer, Ganz Ganz (2002)
a family of endogenous antimicrobial peptidesCurr Opin Hematol, 9
B. Agerberth, B. Agerberth, H. Gunne, J. Odeberg, P. Kogner, H. Boman, G. Gudmundsson (1996)
PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart.Veterinary immunology and immunopathology, 54 1-4
K. Pütsep, S. Normark, H. Boman (1999)
The origin of cecropins; implications from synthetic peptides derived from ribosomal protein L1FEBS Letters, 451
R. Jack, G. Bierbaum, H. Sahl (1998)
Lantibiotics and Related Peptides
C. Pumpuni, J. Demaio, Melissa Kent, Jonathan Davis, Jonathan Davis, J. Beier, J. Beier (1996)
Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development.The American journal of tropical medicine and hygiene, 54 2
(1988)
Cecropin-melittin hybrids. A versatile
M. Simmaco, M. Mangoni, A. Boman, D. Barra, H. Boman (1998)
Experimental Infections of Rana esculenta with Aeromonas hydrophila: A Molecular Mechanism for the Control of the Normal FloraScandinavian Journal of Immunology, 48
K. Pütsep, C. Brändén, H. Boman, S. Normark (1999)
Antibacterial peptide from H. pyloriNature, 398
H. Steiner, D. Hultmark, Åke Engström, H. Bennich, H. Boman (1981)
Sequence and specificity of two antibacterial proteins involved in insect immunityNature, 292
K. Pütsep, L. Axelsson, A. Boman, T. Midtvedt, S. Normark, H. Boman, M. Andersson (2000)
Germ-free and Colonized Mice Generate the Same Products from Enteric Prodefensins*The Journal of Biological Chemistry, 275
H. Boman (1995)
Peptide antibiotics and their role in innate immunity.Annual review of immunology, 13
J. Turner, Yoon Cho, N. Dinh, A. Waring, R. Lehrer (1998)
Activities of LL-37, a Cathelin-Associated Antimicrobial Peptide of Human NeutrophilsAntimicrobial Agents and Chemotherapy, 42
R. Kostmann (1956)
Infantile Genetic Agranulocytosis (Agranulocytosis infantilis hereditaria) A New Recessive Lethal Disease in ManActa Pædiatrica, 45
Yiquan Tang, Jun Yuan, G. Ösapay, K. Ősapay, Dat Tran, Christopher Miller, A. Ouellette, M. Selsted (1999)
A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins.Science, 286 5439
M. Scott, D. Davidson, M. Gold, D. Bowdish, R. Hancock (2002)
The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses1The Journal of Immunology, 169
D. Wade, A. Boman, B. Wåhlin, C. Drain, D. Andreu, H. Boman, R. Merrifield (1990)
All-D amino acid-containing channel-forming antibiotic peptides.Proceedings of the National Academy of Sciences of the United States of America, 87
K. Daher, R. Lehrer, Tomas Ganz, Mitchell Kronenberg (1988)
Isolation and characterization of human defensin cDNA clones.Proceedings of the National Academy of Sciences of the United States of America, 85 19
H. Boman, B. Agerberth, A. Boman (1993)
Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestineInfection and Immunity, 61
e-mail: [email protected])
L. Tomasinsig, M. Scocchi, C. Loreto, D. Artico, M. Zanetti (2002)
Inducible expression of an antimicrobial peptide of the innate immunity in polymorphonuclear leukocytesJournal of Leukocyte Biology, 72
Günther Kreil (1990)
Processing of precursors by dipeptidylaminopeptidases: a case of molecular ticketing.Trends in biochemical sciences, 15 1
D. Ghosh, E. Porter, B. Shen, Sarah Lee, D. Wilk, J. Drazba, S. Yadav, J. Crabb, T. Ganz, C. Bevins (2002)
Paneth cell trypsin is the processing enzyme for human defensin-5Nature Immunology, 3
C. Woese (2000)
Interpreting the universal phylogenetic tree.Proceedings of the National Academy of Sciences of the United States of America, 97 15
M. Zanetti, R. Gennaro, D. Romeo (1995)
Cathelicidins: a novel protein family with a common proregion and a variable C‐terminal antimicrobial domainFEBS Letters, 374
R. Hancock, A. Patrzykat (2002)
Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics.Current drug targets. Infectious disorders, 2 1
A. Schmidtchen, I. Frick, E. Andersson, H. Tapper, L. Björck (2002)
Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37Molecular Microbiology, 46
Mats Andersson, A. Boman, Hans Boman (2003)
Ascaris nematodes from pig and human make three anti-bacterial peptides: isolation of cecropin P1 and two ASABF peptidesCellular and Molecular Life Sciences CMLS, 60
V. Nizet, T. Ohtake, X. Lauth, J. Trowbridge, Jennifer Rudisill, R. Dorschner, V. Pestonjamasp, J. Piraino, K. Huttner, R. Gallo (2001)
Innate antimicrobial peptide protects the skin from invasive bacterial infectionNature, 414
R. Holt, G. Subramanian, A. Halpern, G. Sutton, R. Charlab, D. Nusskern, P. Wincker, A. Clark, JoséM. Ribeiro, R. Wides, S. Salzberg, B. Loftus, M. Yandell, W. Majoros, D. Rusch, Z. Lai, C. Kraft, J. Abril, Véronique Anthouard, Peter Arensburger, P. Atkinson, H. Baden, V. Berardinis, D. Baldwin, V. Beneš, J. Biedler, C. Blass, Randall Bolanos, D. Boscus, Mary Barnstead, Shuang Cai, A. Center, Kabir Chatuverdi, G. Christophides, M. Chrystal, M. Clamp, A. Cravchik, V. Curwen, A. Dana, A. Delcher, I. Dew, C. Evans, M. Flanigan, Anne Grundschober-Freimoser, L. Friedli, Z. Gu, P. Guan, R. Guigó, Maureen Hillenmeyer, S. Hladun, J. Hogan, Young Hong, Jeffrey Hoover, O. Jaillon, Z. Ke, C. Kodira, E. Kokoza, A. Koutsos, Ivica Letunic, A. Levitsky, Yong Liang, Jhy-Jhu Lin, N. Lobo, John Lopez, J. Malek, T. McIntosh, S. Meister, J. Miller, C. Mobarry, Emmanuel Mongin, Sean Murphy, D. O’brochta, C. Pfannkoch, R. Qi, M. Regier, K. Remington, H. Shao, M. Sharakhova, Cynthia Sitter, Jyoti Shetty, Thomas Smith, R. Strong, Jingtao Sun, D. Thomasová, L. Ton, P. Topalis, Z. Tu, M. Unger, B. Walenz, Aihui Wang, Jian Wang, Mei Wang, Xuelan Wang, K. Woodford, J. Wortman, Martin Wu, Alison Yao, E. Zdobnov, Hongyu Zhang, Qi Zhao, Shaying Zhao, Shiaoping Zhu, I. Zhimulev, M. Coluzzi, A. Torre, C. Roth, C. Louis, F. Kalush, R. Mural, E. Myers, M. Adams, Hamilton Smith, S. Broder, M. Gardner, C. Fraser, E. Birney, P. Bork, P. Brey, J. Venter, J. Weissenbach, F. Kafatos, F. Collins, S. Hoffman (2002)
The Genome Sequence of the Malaria Mosquito Anopheles gambiaeScience, 298
Mats Andersson, H. Gunne, B. Agerberth, A. Boman, Tomas Bergman, Rannar Sillard, Hans Jornvalil, Viktor Mutt, B. Olsson, Hans Wigzell, Ake Dagerlind, Hans Boman, Gudmundur Gudmundsson (1995)
NK‐lysin, a novel effector peptide of cytotoxic T and NK cells. Structure and cDNA cloning of the porcine form, induction by interleukin 2, antibacterial and antitumour activity.The EMBO Journal, 14
E. Porter, B. Weisblum, S. Gellman (2002)
Mimicry of Host-Defense Peptides by Unnatural Oligomers: Antimicrobial β-PeptidesJournal of the American Chemical Society, 124
K. Pütsep, G. Carlsson, H. Boman, M. Andersson (2002)
Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation studyThe Lancet, 360
M. Simmaco, A. Boman, M. Mangoni, G. Mignogna, R. Miele, D. Barra, H. Boman (1997)
Effect of glucocorticoids on the synthesis of antimicrobial peptides in amphibian skinFEBS Letters, 416
M. Zasloff (1988)
Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor.Proceedings of the National Academy of Sciences of the United States of America, 84 15
M. Selsted, S. Harwig, T. Ganz, J. Schilling, R. Lehrer (1985)
Primary structures of three human neutrophil defensins.The Journal of clinical investigation, 76 4
M. Simmaco, G. Mignogna, D. Barra (1998)
Antimicrobial peptides from amphibian skin: what do they tell us?Biopolymers, 47 6
S. Krisanaprakornkit, J. Kimball, B. Dale (2002)
Regulation of Human β-Defensin-2 in Gingival Epithelial Cells: The Involvement of Mitogen-Activated Protein Kinase Pathways, But Not the NF-κB Transcription Factor Family1The Journal of Immunology, 168
E. Zdobnov, C. Mering, Ivica Letunic, D. Torrents, M. Suyama, R. Copley, G. Christophides, D. Thomasová, Robert Holt, G. Subramanian, H. Mueller, G. Dimopoulos, John Law, Michael Wells, E. Birney, R. Charlab, Aaron Halpern, E. Kokoza, C. Kraft, Z. Lai, S. Lewis, C. Louis, C. Barillas-Mury, D. Nusskern, Gerald Rubin, S. Salzberg, G. Sutton, P. Topalis, R. Wides, P. Wincker, M. Yandell, Frank Collins, J. Ribeiro, W. Gelbart, F. Kafatos, P. Bork (2002)
Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogasterScience, 298
C. Hill, Jeff Yee, M. Selsted, D. Eisenberg (1991)
Crystal structure of defensin HNP-3, an amphiphilic dimer: mechanisms of membrane permeabilization.Science, 251 5000
M. Hornef, T. Frisan, A. Vandewalle, S. Normark, A. Richter‐Dahlfors (2002)
Toll-like Receptor 4 Resides in the Golgi Apparatus and Colocalizes with Internalized Lipopolysaccharide in Intestinal Epithelial CellsThe Journal of Experimental Medicine, 195
Jishu Shi, Guolong Zhang, Hua Wu, Christopher Ross, F. Blecha, T. Ganz (1999)
Porcine Epithelial β-Defensin 1 Is Expressed in the Dorsal Tongue at Antimicrobial ConcentrationsInfection and Immunity, 67
S. Stenger, Dennis Hanson, R. Teitelbaum, P. Dewan, K. Niazi, C. Froelich, T. Ganz, S. Thoma-Uszynski, A. Melián, C. Bogdan, S. Porcelli, B. Bloom, A. Krensky, R. Modlin (1998)
An antimicrobial activity of cytolytic T cells mediated by granulysin.Science, 282 5386
E. Merrifield, S. Mitchell, J. Ubach, H. Boman, D. Andreu, R. Merrifield (2009)
D-enantiomers of 15-residue cecropin A-melittin hybrids.International journal of peptide and protein research, 46 3-4
Ofer, Levy, Chean Eng, Ooi, Jerrold, Weiss, Robert, 1., Lehrer, Peter, Elsbach (1994)
Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli.The Journal of clinical investigation, 94 2
De Yang, Qian Chen, A. Schmidt, G. Anderson, Ji Wang, J. Wooters, Joost Oppenheim, O. Chertov (2000)
Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T CellsThe Journal of Experimental Medicine, 192
H. Steiner, D. Andreu, R. Merrifield (1988)
Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects.Biochimica et biophysica acta, 939 2
Hiroyuki Yoshio, M. Tollin, G. Gudmundsson, H. Lagercrantz, H. Jörnvall, G. Marchini, B. Agerberth (2003)
Antimicrobial Polypeptides of Human Vernix Caseosa and Amniotic Fluid: Implications for Newborn Innate DefensePediatric Research, 53
D. Andreu, R. Merrifield, H. Steiner, H. Boman (1983)
Solid-phase synthesis of cecropin A and related peptides.Proceedings of the National Academy of Sciences of the United States of America, 80 21
Y. Shai (2002)
Mode of action of membrane active antimicrobial peptides.Biopolymers, 66 4
W. Gilbert, Sandro Souza, M. Long (1997)
Origin of genes.Proceedings of the National Academy of Sciences of the United States of America, 94 15
C. Bevins (1999)
Scratching the surface: inroads to a better understanding of airway host defense.American journal of respiratory cell and molecular biology, 20 5
Chengquan Zhao, T. Ganz, R. Lehrer (1995)
Structures of genes for two cathelin‐associated antimicrobial peptides: prophenin‐2 and PR‐39FEBS Letters, 376
B. Agerberth, H. Gunne, Jakob Odeberg, P. Kogner, H. Boman, G. Gudmundsson (1995)
FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis.Proceedings of the National Academy of Sciences of the United States of America, 92 1
A. Ouellette, M. Selsted (1996)
Paneth cell defensins: Endogenous peptide components of intestinal host defenseThe FASEB Journal, 10
Jishu Shi, C. Ross, T. Leto, F. Blecha (1996)
PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox.Proceedings of the National Academy of Sciences of the United States of America, 93 12
J. Harder, J. Bartels, E. Christophers, J. Schröder (2001)
Isolation and Characterization of Human β-Defensin-3, a Novel Human Inducible Peptide Antibiotic*The Journal of Biological Chemistry, 276
K. Huttner, C. Bevins (1999)
Antimicrobial Peptides as Mediators of Epithelial Host DefensePediatric Research, 45
Göran Carlsson, Anders Fasth (2001)
Infantile genetic agranulocytosis, morbus Kostmann: Presentation of six cases from the original “Kostmann family” and a reviewActa Pædiatrica, 90
M. Selsted, D. Brown, R. Delange, R. Lehrer (1983)
Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages.The Journal of biological chemistry, 258 23
Kostmann Kostmann (1956)
Infantile genetic agranulocytosis (agranulocytosis infantilis hereditaria): a new recessive lethal disease in manActa Paediatr Scand, 56
Lemaitre Lemaitre, Nicolas Nicolas, Michaut Michaut, Reichhart Reichhart, Hoffmann Hoffmann (1996)
The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adultsCell, 86
G. Gudmundsson, G. Gudmundsson, B. Agerberth, B. Agerberth, J. Odeberg, T. Bergman, B. Olsson, R. Salcedo (1996)
The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes.European journal of biochemistry, 238 2
Kleanthis Xanthopoulos, Jong-Youn Lee, Renbao Gan, K. Kockum, Ingrid Faye, Hans Boman (1988)
The structure of the gene for cecropin B, an antibacterial immune protein from Hyalophora cecropia.European journal of biochemistry, 172 2
R. Lehrer, T. Ganz (2002)
Cathelicidins: a family of endogenous antimicrobial peptidesCurrent Opinion in Hematology, 9
B. Lemaître, E. Kromer-Metzger, Lydia Michaut, E. Nicolas, M. Meister, P. Georgel, J. Reichhart, Jules Hoffmann (1995)
A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense.Proceedings of the National Academy of Sciences of the United States of America, 92 21
E. Porter, B. Weisblum, S. Gellman (2002)
Mimicry of host-defense peptides by unnatural oligomers: antimicrobial beta-peptides.Journal of the American Chemical Society, 124 25
D. Andreu, L. Rivas (1998)
Animal antimicrobial peptides: an overview.Biopolymers, 47 6
N. Salzman, D. Ghosh, K. Huttner, Y. Paterson, C. Bevins (2003)
Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensinNature, 422
A. Ouellette, S. Miller, A. Henschen, M. Selsted (1992)
Purification and primary structure of murine cryptdin‐1, a Paneth cell defensinFEBS Letters, 304
S. Yoshida, Daisuke Ioka, Hiroyuki Matsuoka, Hitoshi Endo, Akira Ishii (2001)
Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes.Molecular and biochemical parasitology, 113 1
Hua Wu, Guolong Zhang, J. Minton, C. Ross, F. Blecha (2000)
Regulation of Cathelicidin Gene Expression: Induction by Lipopolysaccharide, Interleukin-6, Retinoic Acid, andSalmonella enterica Serovar Typhimurium InfectionInfection and Immunity, 68
M. Zasloff (2002)
Antimicrobial peptides of multicellular organismsNature, 415
(1996)
Human enteric defensins – gene structure and developmental expression
F. Niyonsaba, K. Iwabuchi, A. Someya, M. Hirata, H. Matsuda, H. Ogawa, I. Nagaoka (2002)
A cathelicidin family of human antibacterial peptide LL‐37 induces mast cell chemotaxisImmunology, 106
G. Diamond, M. Zasloff, H. Eck, M. Brasseur, W. Maloy, C. Bevins (1991)
Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA.Proceedings of the National Academy of Sciences of the United States of America, 88
E. Liepinsh, M. Andersson, J. Ruysschaert, G. Otting (1997)
Saposin fold revealed by the NMR structure of NK-lysinNature Structural Biology, 4
J. Sutko, James Kenyon, John Reeves (1994)
Mechanisms of actionSchizophrenia Research, 11
D. Hultmark (2003)
Drosophila immunity: paths and patterns.Current opinion in immunology, 15 1
M. Hedengren, Marika Hedengren, BengtÅsling, M. Dushay, I. Andó, I. Andó, Sophia Ekengren, Sophia Ekengren, Margareta Wihlborg, D. Hultmark, D. Hultmark (1999)
Relish, a central factor in the control of humoral but not cellular immunity in Drosophila.Molecular cell, 4 5
J. Cowland, A. Johnsen, N. Borregaard (1995)
hCAP‐18, a cathelin/pro‐bactenecin‐like protein of human neutrophil specific granulesFEBS Letters, 368
Abstract. Boman HG (Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, Sweden). Antibacterial peptides: basic facts and emerging concepts (Review). J Intern Med 2003; 254: 197–215. Antibacterial peptides are the effector molecules of innate immunity. Generally they contain 15–45 amino acid residues and the net charge is positive. The cecropin type of linear peptides without cysteine were found first in insects, whilst the defensin type with three disulphide bridges were found in rabbit granulocytes. Now a database stores more than 800 sequences of antibacterial peptides and proteins from the animal and plant kingdoms. Generally, each species has 15–40 peptides made from genes, which code for only one precursor. The dominating targets are bacterial membranes and the killing reaction must be faster than the growth rate of the bacteria. Some antibacterial peptides are clearly multifunctional and an attempt to predict this property from the hydrophobicity of all amino acid side chains are given. Gene structures and biosynthesis are known both in the fruit fly Drosophila and several mammals. Humans need two classes of defensins and the cathelicidin‐derived linear peptide LL‐37. Clinical cases show that deficiencies in these peptides give severe symptoms. Examples given are morbus Kostmann and atopic allergy. Several antibacterial peptides are being developed as drugs.
Journal of Internal Medicine – Wiley
Published: Sep 1, 2003
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.