Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Countersolvent Electrolytes for Lithium‐Metal Batteries

Countersolvent Electrolytes for Lithium‐Metal Batteries Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI− anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI− anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advanced Energy Materials Wiley

Loading next page...
 
/lp/wiley/countersolvent-electrolytes-for-lithium-metal-batteries-XbsTIkTVNS

References (36)

Publisher
Wiley
Copyright
© 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
ISSN
1614-6832
eISSN
1614-6840
DOI
10.1002/aenm.201903568
Publisher site
See Article on Publisher Site

Abstract

Development of electrolytes that simultaneously have high ionic conductivity, wide electrochemical window, and lithium dendrite suppression ability is urgently required for high‐energy lithium‐metal batteries (LMBs). Herein, an electrolyte is designed by adding a countersolvent into LiFSI/DMC (lithium bis(fluorosulfonyl)amide/dimethyl carbonate) electrolytes, forming countersolvent electrolytes, in which the countersolvent is immiscible with the salt but miscible with the carbonate solvents. The solvation structure and unique properties of the countersolvent electrolyte are investigated by combining electroanalytical technology with a Molecular Dynamics simulation. Introducing the countersolvent alters the coordination shell of Li+ cations and enhances the interaction between Li+ cations and FSI− anions, which leads to the formation of a LiF‐rich solid electrolyte interphase, arising from the preferential reduction of FSI− anions. Notably, the countersolvent electrolyte suppresses Li dendrites and enables stable cycling performance of a Li||NCM622 battery at a high cut‐off voltage of 4.6 V at both 25 and 60 °C. This study provides an avenue to understand and design electrolytes for high‐energy LMBs in the future.

Journal

Advanced Energy MaterialsWiley

Published: Mar 1, 2020

Keywords: ; ; ;

There are no references for this article.