Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Clathrin self-assembly is mediated by a tandemly repeated superhelix

Clathrin self-assembly is mediated by a tandemly repeated superhelix Clathrin is a triskelion-shaped cytoplasmic protein that polymerizes into a polyhedral lattice on intracellular membranes to form protein-coated membrane vesicles. Lattice formation induces the sorting of membrane proteins during endocytosis and organelle biogenesis by interacting with membrane-associated adaptor molecules 1 . The clathrin triskelion is a trimer of heavy-chain subunits (1,675 residues), each binding a single light-chain subunit, in the hub domain (residues 1,074–1,675). Light chains negatively modulate polymerization so that intracellular clathrin assembly is adaptor-dependent 2 . Here we report the atomic structure, to 2.6 Å resolution, of hub residues 1,210–1,516 involved in mediating spontaneous clathrin heavy-chain polymerization and light-chain association 3 , 4 . The hub fragment folds into an elongated coil of α-helices, and alignment analyses reveal a 145-residue motif that is repeated seven times along the filamentous leg and appears in other proteins involved in vacuolar protein sorting. The resulting model provides a three-dimensional framework for understanding clathrin heavy-chain self-assembly, light-chain binding and trimerization. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Clathrin self-assembly is mediated by a tandemly repeated superhelix

Loading next page...
 
/lp/springer-journals/clathrin-self-assembly-is-mediated-by-a-tandemly-repeated-superhelix-YGWvwflU0y

References (31)

Publisher
Springer Journals
Copyright
Copyright © 1999 by Macmillan Magazines Ltd.
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/20708
Publisher site
See Article on Publisher Site

Abstract

Clathrin is a triskelion-shaped cytoplasmic protein that polymerizes into a polyhedral lattice on intracellular membranes to form protein-coated membrane vesicles. Lattice formation induces the sorting of membrane proteins during endocytosis and organelle biogenesis by interacting with membrane-associated adaptor molecules 1 . The clathrin triskelion is a trimer of heavy-chain subunits (1,675 residues), each binding a single light-chain subunit, in the hub domain (residues 1,074–1,675). Light chains negatively modulate polymerization so that intracellular clathrin assembly is adaptor-dependent 2 . Here we report the atomic structure, to 2.6 Å resolution, of hub residues 1,210–1,516 involved in mediating spontaneous clathrin heavy-chain polymerization and light-chain association 3 , 4 . The hub fragment folds into an elongated coil of α-helices, and alignment analyses reveal a 145-residue motif that is repeated seven times along the filamentous leg and appears in other proteins involved in vacuolar protein sorting. The resulting model provides a three-dimensional framework for understanding clathrin heavy-chain self-assembly, light-chain binding and trimerization.

Journal

NatureSpringer Journals

Published: May 27, 1999

There are no references for this article.