Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Björnheden, M. Levin, M. Evaldsson, O. Wiklund (1999)
Evidence of hypoxic areas within the arterial wall in vivo.Arteriosclerosis, thrombosis, and vascular biology, 19 4
N. Mazure, J. Pouysségur (2010)
Hypoxia-induced autophagy: cell death or cell survival?Current opinion in cell biology, 22 2
G. Hansson, P. Libby (2006)
The immune response in atherosclerosis: a double-edged swordNature Reviews Immunology, 6
C. Kraft, M. Peter, K. Hofmann (2010)
Selective autophagy: ubiquitin-mediated recognition and beyondNature Cell Biology, 12
B. Razani, Chu Feng, T. Coleman, Roy Emanuel, Haitao Wen, Seungmin Hwang, J. Ting, H. Virgin, M. Kastan, C. Semenkovich (2012)
Autophagy links inflammasomes to atherosclerotic progression.Cell metabolism, 15 4
Y. Carmi, E. Voronov, S. Dotan, N. Lahat, M. Rahat, M. Fogel, M. Huszár, Malka White, C. Dinarello, R. Apte (2009)
The Role of Macrophage-Derived IL-1 in Induction and Maintenance of Angiogenesis1The Journal of Immunology, 183
J. Sluimer, M. Daemen (2009)
Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosisThe Journal of Pathology, 218
K. Rajamäki, J. Lappalainen, K. Öörni, E. Välimäki, S. Matikainen, P. Kovanen, K. Eklund (2010)
Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and InflammationPLoS ONE, 5
P. Ghezzi, C. Dinarello, M. Bianchi, Mary Rosandich, J. Repine, C. White (1991)
Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear cells.Cytokine, 3 3
D. Nakano, Tetsuya Hayashi, Naoko Tazawa, C. Yamashita, Sakiko Inamoto, Nobuaki Okuda, Tatsuhiko Mori, K. Sohmiya, Y. Kitaura, Y. Okada, Y. Matsumura (2005)
Chronic Hypoxia Accelerates the Progression of Atherosclerosis in Apolipoprotein E-Knockout MiceHypertension Research, 28
J. Harris, M. Hartman, Caitrionna Roche, S. Zeng, Amy O'Shea, Fiona Sharp, Eimear Lambe, E. Creagh, D. Golenbock, J. Tschopp, H. Kornfeld, K. Fitzgerald, E. Lavelle (2011)
Autophagy Controls IL-1β Secretion by Targeting Pro-IL-1β for DegradationThe Journal of Biological Chemistry, 286
E. Folco, G. Sukhova, T. Quillard, P. Libby (2014)
Moderate Hypoxia Potentiates Interleukin-1&bgr; Production in Activated Human MacrophagesCirculation Research, 115
C. Shi, K. Shenderov, N. Huang, J. Kabat, M. Abu-Asab, K. Fitzgerald, A. Sher, J. Kehrl (2012)
Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destructionNature Immunology, 13
Grace Chen, G. Núñez (2010)
Sterile inflammation: sensing and reacting to damageNature Reviews Immunology, 10
V. Savransky, A. Nanayakkara, Jianguo Li, Shannon Bevans, Philip Smith, Annabelle Rodriguez, V. Polotsky (2007)
Chronic intermittent hypoxia induces atherosclerosis.American journal of respiratory and critical care medicine, 175 12
(2013)
CD 36 coordinates NLRP 3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation
P. Duewell, H. Kono, K. Rayner, C. Sirois, G. Vladimer, F. Bauernfeind, G. Abela, L. Franchi, G. Núñez, M. Schnurr, T. Espevik, E. Lien, K. Fitzgerald, K. Rock, K. Moore, S. Wright, V. Hornung, E. Latz (2010)
NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystalsNature, 466
E. Marsch, J. Sluimer, M. Daemen (2013)
Hypoxia in atherosclerosis and inflammationCurrent Opinion in Lipidology, 24
K. Schroder, Rongbin Zhou, J. Tschopp (2010)
The NLRP3 Inflammasome: A Sensor for Metabolic Danger?Science, 327
D. Song, Guoqiang Fang, Sun-zhong Mao, X. Ye, Gang Liu, Y. Gong, S. Liu (2012)
Chronic intermittent hypoxia induces atherosclerosis by NF-κB-dependent mechanisms.Biochimica et biophysica acta, 1822 11
Ismail Sergin, B. Razani (2014)
Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosisTrends in Endocrinology & Metabolism, 25
Key Words: Editorials ■ atherosclerosis ■ autophagy ■ cellular hypoxia ■ inflammation ■ interleukins ■ macrophages
Qiuyu Liu, Danyan Zhang, Diyu Hu, Xiangmei Zhou, Yang Zhou (2018)
The role of mitochondria in NLRP3 inflammasome activation.Molecular immunology, 103
Saj Parathath, Yuan Yang, S. Mick, E. Fisher (2013)
Hypoxia in murine atherosclerotic plaques and its adverse effects on macrophages.Trends in cardiovascular medicine, 23 3
G. Tannahill, A. Curtis, Juraj Adamik, E. Palsson-McDermott, Anne McGettrick, G. Goel, C. Frezza, N. Bernard, B. Kelly, N. Foley, Liang Zheng, A. Gardet, Z. Tong, S. Jany, S. Corr, M. Haneklaus, Brian Caffrey, K. Pierce, S. Walmsley, F. Beasley, E. Cummins, V. Nizet, M. Whyte, C. Taylor, Hening Lin, S. Masters, E. Gottlieb, V. Kelly, C. Clish, P. Auron, R. Xavier, R. Xavier, L. O’Neill (2013)
Succinate is an inflammatory signal that induces IL-1β through HIF-1αNature, 496
J. Sluimer, J. Gasc, J. Wanroij, N. Kisters, M. Groeneweg, M. Gelpke, J. Cleutjens, L. Akker, P. Corvol, B. Wouters, M. Daemen, A. Bijnens (2008)
Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis.Journal of the American College of Cardiology, 51 13
H. Fang, R. Hughes, C. Murdoch, S. Coffelt, S. Biswas, A. Harris, R. Johnson, H. Imityaz, M. Simon, E. Fredlund, F. Greten, J. Rius, C. Lewis (2009)
Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia.Blood, 114 4
S. Masters, E. Latz, L. O’Neill (2011)
The Inflammasome in Atherosclerosis and Type 2 DiabetesScience Translational Medicine, 3
L. Hultén, M. Levin (2009)
The role of hypoxia in atherosclerosisCurrent Opinion in Lipidology, 20
N. Chandel, E. Maltepe, E. Goldwasser, Carol Mathieu, M. Simon, P. Schumacker (1998)
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription.Proceedings of the National Academy of Sciences of the United States of America, 95 20
J. Jun, C. Reinke, D. Bedja, D. Berkowitz, Shannon Bevans‐Fonti, Jianguo Li, L. Barouch, K. Gabrielson, V. Polotsky (2010)
Effect of intermittent hypoxia on atherosclerosis in apolipoprotein E-deficient mice.Atherosclerosis, 209 2
Editorial Hypoxia in Plaque Macrophages A New Danger Signal for Interleukin-1β Activation? Ismail Sergin, Trent D. Evans, Somashubhra Bhattacharya, Babak Razani he recruitment of inflammatory cells to the arterial aberrant lipid metabolism in the atherosclerotic plaque, have Twall and their critical role in increasing plaque size and now been shown to be potent inducers of the NLRP3 inflam- complexity is now dogma in the field of atherosclerosis. masome and IL-1β secretion in macrophages, akin to other 4–6 Macrophages compose the majority of the inflammatory bur - crystalline damage-associated molecular patterns. Even the den in plaques and incite many of the deleterious responses proinflammatory action of oxidized low-density lipoprotein that exacerbate disease. Thus, the mechanisms by which mac- seems to occur in part through CD36-mediated uptake into rophages are activated to secrete cytokines and other inflam- lysosomes and conversion to cholesterol crystals. matory mediators are of intense interest. The atherosclerotic Given the ability of IL-1β to further enhance the proinflam- milieu is replete with cellular stressors such as modified apo- matory response and recruitment of immune cells, its critical lipoprotein B–containing lipoproteins (eg, oxidized low-den- role in exacerbating atherosclerotic progression has long been sity lipoprotein) and reactive oxygen species, which
Circulation Research – Wolters Kluwer Health
Published: Oct 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.