Access the full text.
Sign up today, get DeepDyve free for 14 days.
Haimei Liu, Haoshen Zhou, Lipeng Chen, Zhanfeng Tang, Wensheng Yang (2011)
Electrochemical insertion/deinsertion of sodium on NaV6O15 nanorods as cathode material of rechargeable sodium-based batteriesJournal of Power Sources, 196
DiVincenzo Dp, Mele Ej (1985)
Cohesion and structure in stage-1 graphite intercalation compounds.Physical Review B, 32
D. Stevens, J. Dahn (2000)
High Capacity Anode Materials for Rechargeable Sodium‐Ion BatteriesJournal of The Electrochemical Society, 147
Wu Li, J. Dahn, D. Wainwright (1994)
Rechargeable Lithium Batteries with Aqueous ElectrolytesScience, 264
Wei Wang, Cheng-Bin Yu, Zheshuai Lin, Jungang Hou, Hongmin Zhu, S. Jiao (2013)
Microspheric Na2Ti3O7 consisting of tiny nanotubes: an anode material for sodium-ion batteries with ultrafast charge-discharge rates.Nanoscale, 5 2
Sun Park, I. Gocheva, S. Okada, J. Yamaki (2011)
Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion BatteriesJournal of The Electrochemical Society, 158
B. Ellis, L. Nazar (2012)
Sodium and sodium-ion energy storage batteriesCurrent Opinion in Solid State & Materials Science, 16
K. Colbow, J. Dahn, R. Haering (1989)
Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4Journal of Power Sources, 26
Youngjin Kim, Yuwon Park, Aram Choi, N. Choi, Jeongsoo Kim, Junesoo Lee, J. Ryu, Seung Oh, Kyu Lee (2013)
An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion BatteriesAdvanced Materials, 25
T. Honma, T. Togashi, N. Ito, T. Komatsu (2012)
Fabrication of Na2FeP2O7 glass-ceramics for sodium ion batteryJournal of the Ceramic Society of Japan, 120
J. Molenda (1990)
Electronic and electrochemical properties of nickel bronze, NaxNiO2Solid State Ionics, 38
A. Yamada, Masahiro Tanaka, Koichi Tanaka, Koji Sekai (1999)
Jahn–Teller instability in spinel Li–Mn–OJournal of Power Sources, 81
Xianyong Wu, Yuliang Cao, X. Ai, Jiangfeng Qian, Hanxi Yang (2013)
A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistryElectrochemistry Communications, 31
O. Bohnké, S. Ronchetti, D. Mazza (1999)
Conductivity Measurements on Nasicon and Nasicon-modified materialsSolid State Ionics, 122
N. Yabuuchi, Masataka Kajiyama, J. Iwatate, Heisuke Nishikawa, Shuji Hitomi, R. Okuyama, Ryo Usui, Y. Yamada, S. Komaba (2012)
P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries.Nature materials, 11 6
R. Alcántara, M. Jaraba, P. Lavela, J. Tirado (2002)
NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion BatteriesChemistry of Materials, 14
K. Saravanan, C. Mason, Ashish Rudola, Kim Wong, P. Balaya (2013)
The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion BatteriesAdvanced Energy Materials, 3
P. Barpanda, Jiechen Lu, Tiannan Ye, Masataka Kajiyama, Sai-Cheong Chung, N. Yabuuchi, S. Komaba, A. Yamada (2013)
A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteriesRSC Advances, 3
V. Palomares, P. Serras, I. Villaluenga, K. Hueso, J. Carretero‐González, T. Rojo (2012)
Na-ion batteries, recent advances and present challenges to become low cost energy storage systemsEnergy and Environmental Science, 5
F. Sauvage, L. Laffont, J. Tarascon, E. Baudrin (2007)
Study of the insertion/deinsertion mechanism of sodium into Na0.44MnO2.Inorganic chemistry, 46 8
K. Trad, D. Carlier, L. Croguennec, A. Wattiaux, M. Amara, C. Delmas (2010)
NaMnFe2(PO4)3 Alluaudite Phase: Synthesis, Structure, and Electrochemical Properties As Positive Electrode in Lithium and Sodium BatteriesChemistry of Materials, 22
S. Khorari, A. Rulmont, P. Tarte (1997)
The Arsenates NaCa2M2+2(AsO4)3(M2+=Mg, Ni, Co): Influence of Cationic Substitutions on the Garnet–Alluaudite PolymorphismIEEE Journal of Solid-state Circuits, 131
S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, Atsushi Ito, Y. Ohsawa (2011)
Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries.ACS applied materials & interfaces, 3 11
C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller (1987)
A nasicon-type phase as intercalation electrode: NaTi2(PO4)3Materials Research Bulletin, 22
Jingjun Ding, Yong-ning Zhou, Qian Sun, Z. Fu (2012)
Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteriesElectrochemistry Communications, 22
Sung-Wook Kim, D. Seo, Hyungsub Kim, Kyu‐Young Park, K. Kang (2012)
A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes.Physical chemistry chemical physics : PCCP, 14 10
D. Carlier, D. Carlier, J. Cheng, J. Cheng, R. Berthelot, M. Guignard, M. Guignard, M. Yoncheva, M. Yoncheva, R. Stoyanova, R. Stoyanova, B. Hwang, C. Delmas, C. Delmas (2011)
The P2-Na(2/3)Co(2/3)Mn(1/3)O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery.Dalton transactions, 40 36
S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, Kazuma Gotoh, Kazuya Fujiwara (2011)
Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion BatteriesAdvanced Functional Materials, 21
S. Ong, V. Chevrier, G. Ceder (2011)
Comparison of Small Polaron Migration and Phase Separation in Olivine LiMnPO₄ and LiFePO₄ using Hybrid Density Functional Theory
Min Zhou, Li-Min Zhu, Yuliang Cao, R. Zhao, Jianfeng Qian, X. Ai, Hanxi Yang (2012)
Fe(CN)6−4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteriesRSC Advances, 2
M. Whittingham (1979)
Chemistry of intercalation compounds: Metal guests in chalcogenide hostsProgress in Solid State Chemistry, 12
Donghan Kim, Eungje Lee, Michael Slater, Wenquan Lu, Shawn Rood, Christopher Johnson (2012)
Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery applicationElectrochemistry Communications, 18
Yong‐Sheng Hu, Weihe Kong, Hong Li, Xuejie Huang, Liquan Chen (2004)
Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteriesElectrochemistry Communications, 6
(2007)
Inorg
Yonggang Wang, Jin Yi, Yongyao Xia (2012)
Recent Progress in Aqueous Lithium‐Ion BatteriesAdvanced Energy Materials, 2
D. Buchholz, A. Moretti, Richard Kloepsch, S. Nowak, V. Siozios, M. Winter, S. Passerini (2013)
Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation MaterialChemistry of Materials, 25
Seung‐Taek Myung, S. Komaba, N. Hirosaki, N. Kumagai, K. Arai, R. Kodama, I. Nakai (2003)
Structural investigation of layered Li1-δMnxCr1-xO2 by XANES and in situ XRD measurementsJournal of The Electrochemical Society, 150
K. Lee, T. Ramesh, F. Nan, G. Botton, L. Nazar (2011)
Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion BatteriesChemistry of Materials, 23
Z. Yang, Jianlu Zhang, M. Kintner-Meyer, Xiaochuan Lu, D. Choi, J. Lemmon, Jun Liu (2011)
Electrochemical energy storage for green grid.Chemical reviews, 111 5
J. Barker, R. Gover, P. Burns, A. Bryan (2005)
A Symmetrical Lithium-Ion Cell Based on Lithium Vanadium Fluorophosphate, LiVPO4FElectrochemical and Solid State Letters, 8
Jie Zhao, Liwei Zhao, N. Dimov, S. Okada, T. Nishida (2013)
Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion BatteriesJournal of The Electrochemical Society, 160
Plousia Vassilaras, Xiaohua Ma, X. Li, G. Ceder (2011)
Electrochemical Properties of Monoclinic NaNiO2Journal of The Electrochemical Society, 160
S. Komaba, Yuta Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, Satoru Kuze (2012)
Redox reaction of Sn-polyacrylate electrodes in aprotic Na cellElectrochemistry Communications, 21
J. Köhler, H. Makihara, H. Uegaito, H. Inoue, M. Toki (2000)
LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery systemElectrochimica Acta, 46
J. Barker, M. Saidi, Jeffrey Swoyer (2004)
A Comparative Investigation of the Li Insertion Properties of the Novel Fluorophosphate Phases, NaVPO4 F and LiVPO4 FJournal of The Electrochemical Society, 151
A. Padhi, K. Nanjundaswamy, C. Masquelier, J. Goodenough (1997)
Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium IntercalationJournal of The Electrochemical Society, 144
M. Armand, S. Grugeon, H. Vezin, S. Laruelle, Périnne Ribière, P. Poizot, J. Tarascon (2009)
Conjugated dicarboxylate anodes for Li-ion batteries.Nature materials, 8 2
M. Sathiya, K. Hemalatha, K. Ramesha, J. Tarascon, A. Prakash (2012)
Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2Chemistry of Materials, 24
Zheng Li, D. Young, Kai Xiang, W. Carter, Y. Chiang (2013)
Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 SystemAdvanced Energy Materials, 3
Jun-mei Zhao, Zelang Jian, Jie Ma, Fu-chun Wang, Yong‐Sheng Hu, Wen Chen, Liquan Chen, Huizhou Liu, S. Dai (2012)
Monodisperse iron phosphate nanospheres: preparation and application in energy storage.ChemSusChem, 5 8
Liangfu Zhao, Jun-mei Zhao, Yong‐Sheng Hu, Hong Li, Zhibin Zhou, M. Armand, Liquan Chen (2012)
Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion BatteryAdvanced Energy Materials, 2
Premkumar Senguttuvan, G. Rousse, M. Dompablo, H. Vezin, J. Tarascon, M. Palacín (2013)
Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple.Journal of the American Chemical Society, 135 10
E. Hosono, Tatsuya Saito, Jun-ichi Hoshino, M. Okubo, Yoshiyasu Saito, D. Nishio–Hamane, T. Kudo, Haoshen Zhou (2012)
High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrodeJournal of Power Sources, 217
Y. Shao-horn, S. Hackney, A. Armstrong, P. Bruce, R. Gitzendanner, Christopher Johnson, M. Thackeray (1999)
Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice ImagingJournal of The Electrochemical Society, 146
P. Serras, V. Palomares, A. Goñi, P. Kubiak, T. Rojo (2013)
Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteriesJournal of Power Sources, 241
A. Abouimrane, Wei Weng, Hussameldin Eltayeb, Yanjie Cui, J. Niklas, O. Poluektov, K. Amine (2012)
Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cellsEnergy and Environmental Science, 5
Candace Chan, H. Peng, Gao Liu, K. Mcilwrath, Xiao Zhang, R. Huggins, Yi Cui (2008)
High-performance lithium battery anodes using silicon nanowires.Nature nanotechnology, 3 1
S. Komaba, T. Mikumo, A. Ogata (2008)
Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytesElectrochemistry Communications, 10
S. Komaba, Chikara Takei, T. Nakayama, A. Ogata, N. Yabuuchi (2010)
Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2Electrochemistry Communications, 12
A. Kuhn, N. Menéndez, F. García-Alvarado, E. Morán, J. Tornero, M. Alario-Franco (1997)
Topotactic Oxidation of the Quadruple-Rutile-Type Chain Structure Na0.875Fe0.875Ti1.125O4IEEE Journal of Solid-state Circuits, 130
N. Anantharamulu, N. Anantharamulu, K. Rao, G. Rambabu, B. Kumar, V. Radha, M. Vithal (2011)
A wide-ranging review on Nasicon type materialsJournal of Materials Science, 46
M. Doeff, M. Peng, Yan-ping Ma, L. Jonghe (1994)
Orthorhombic Na x MnO2 as a Cathode Material for Secondary Sodium and Lithium Polymer BatteriesJournal of The Electrochemical Society, 141
B. Dunn, H. Kamath, J. Tarascon (2011)
Electrical Energy Storage for the Grid: A Battery of ChoicesScience, 334
Jong-Seon Kim, H. Ahn, H. Ryu, Dong-Ju Kim, G. Cho, Ki-won Kim, T. Nam, Jou‐Hyeon Ahn (2008)
The discharge properties of Na/Ni3S2 cell at ambient temperatureJournal of Power Sources, 178
K. Tang, L. Fu, Robin White, Linghui Yu, M. Titirici, M. Antonietti, J. Maier (2012)
Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based BatteriesAdvanced Energy Materials, 2
Jungwon Kang, S. Baek, V. Mathew, J. Gim, Jinju Song, Hyosun Park, Eunji Chae, A. Rai, Jaekook Kim (2012)
High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteriesJournal of Materials Chemistry, 22
J. Whitacre, A. Tevar, S. Sharma (2010)
Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage deviceElectrochemistry Communications, 12
A. Langrock, Yunhua Xu, Yihang Liu, S. Ehrman, A. Manivannan, Chunsheng Wang (2013)
Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodesJournal of Power Sources, 223
R. Zhao, Li-Min Zhu, Yuliang Cao, X. Ai, Hanxi Yang (2012)
An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteriesElectrochemistry Communications, 21
Tae Kim, Won Jung, Hyun Ryu, K. Kim, Jung Ahn, K. Cho, G. Cho, Tran Nam, I. Ahn, Hyung Ahn (2008)
Electrochemical characteristics of Na/FeS2 battery by mechanical alloyingJournal of Alloys and Compounds, 449
J. Thorne, R. Dunlap, M. Obrovac (2013)
Structure and Electrochemistry of NaxFexMn1-xO2 (1.0
K. Sakaushi, E. Hosono, Georg Nickerl, T. Gemming, Haoshen Zhou, S. Kaskel, J. Eckert (2013)
Aromatic porous-honeycomb electrodes for a sodium-organic energy storage deviceNature Communications, 4
Chenxi Zu, Hong Li (2011)
Thermodynamic analysis on energy densities of batteriesEnergy and Environmental Science, 4
H. Ibrahim, A. Ilinca, J. Perron (2008)
Energy storage systems—Characteristics and comparisonsRenewable & Sustainable Energy Reviews, 12
P. Novák, K. Müller, K. Santhanam, O. Haas (1997)
Electrochemically Active Polymers for Rechargeable Batteries.Chemical reviews, 97 1
M. Hidouri, Besma Lajmi, A. Wattiaux, L. Fournès, J. Darriet, M. Amara (2004)
Characterization by X-ray diffraction, magnetic susceptibility and Mössbauer spectroscopy of a new alluaudite-like phosphate:: Na4CaFe4(PO4)6Journal of Solid State Chemistry, 177
D. Yuan, Wei He, Feng Pei, Fayuan Wu, Yue Wu, Jiangfeng Qian, Yuliang Cao, X. Ai, Hanxi Yang (2013)
Synthesis and electrochemical behaviors of layered Na0.67[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteriesJournal of Materials Chemistry, 1
Larisa Plashnitsa, E. Kobayashi, Yoshinori Noguchi, S. Okada, J. Yamaki (2010)
Performance of NASICON Symmetric Cell with Ionic Liquid ElectrolyteJournal of The Electrochemical Society, 157
M. Chakir, A. Jazouli, D. Waal (2006)
Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphatesJournal of Solid State Chemistry, 179
Wei Wang, Cheng-Bin Yu, Yingjun Liu, Jungang Hou, Hongmin Zhu, S. Jiao (2013)
Single crystalline Na2Ti3O7 rods as an anode material for sodium-ion batteriesRSC Advances, 3
V. Chevrier, G. Ceder (2011)
Challenges for Na-ion Negative ElectrodesJournal of The Electrochemical Society, 158
J. Bridson, Sean Quinlan, P. Tremaine (1998)
Synthesis and Crystal Structure of Maricite and Sodium Iron(III) HydroxyphosphateChemistry of Materials, 10
Yunhua Xu, Yujie Zhu, Yihang Liu, Chunsheng Wang (2013)
Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion BatteriesAdvanced Energy Materials, 3
Chih-Yao Chen, K. Matsumoto, T. Nohira, R. Hagiwara, Atsushi Fukunaga, Sho-ichiro Sakai, K. Nitta, Shin'ji Inazawa (2013)
Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSAJournal of Power Sources, 237
Yuliang Cao, Lifen Xiao, M. Sushko, Wei Wang, B. Schwenzer, Jie Xiao, Z. Nie, L. Saraf, Zhengguo Yang, Jun Liu (2012)
Sodium ion insertion in hollow carbon nanowires for battery applications.Nano letters, 12 7
H. Hong (1976)
Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆Materials Research Bulletin, 11
C. Delmas, C. Fouassier, P. Hagenmuller (1980)
Structural classification and properties of the layered oxidesPhysica B-condensed Matter, 99
Yosuke Yamada, T. Doi, I. Tanaka, S. Okada, J. Yamaki (2011)
Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteriesJournal of Power Sources, 196
J. Wang, Xiao Liu, S. Mao, J. Huang (2012)
Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction.Nano letters, 12 11
Hyungsub Kim, In-chul Park, D. Seo, Seongsu Lee, Sung-Wook Kim, W. Kwon, Young‐Uk Park, C. Kim, Seokwoo Jeon, K. Kang (2012)
New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study.Journal of the American Chemical Society, 134 25
Sebastian Wenzel, Takeshi Hara, J. Janek, P. Adelhelm (2011)
Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategiesEnergy and Environmental Science, 4
Liang Zhao, Huilin Pan, Yong‐Sheng Hu, Hong Li, Liquan Chen (2012)
Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion batteryChinese Physics B, 21
Deyu Wang, Xiaodong Wu, Zhaoxiang Wang, Liquan Chen (2005)
Cracking causing cyclic instability of LiFePO4 cathode materialJournal of Power Sources, 140
S. Ong, V. Chevrier, G. Hautier, Anubhav Jain, Charles Moore, Sangtae Kim, Xiaohua Ma, G. Ceder (2011)
Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materialsEnergy and Environmental Science, 4
G. Derrien, J. Hassoun, S. Panero, B. Scrosati (2007)
Nanostructured Sn–C Composite as an Advanced Anode Material in High‐Performance Lithium‐Ion BatteriesAdvanced Materials, 19
K. Mizushima, P. Jones, P. Wiseman, J. Goodenough (1980)
LixCoO2 (0Materials Research Bulletin, 15
Kazuma Gotoh, T. Ishikawa, S. Shimadzu, N. Yabuuchi, S. Komaba, K. Takeda, A. Goto, K. Deguchi, S. Ohki, K. Hashi, T. Shimizu, H. Ishida (2013)
NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion batteryJournal of Power Sources, 225
J. Reed, G. Ceder, Anton Ven (2001)
Layered-to-Spinel Phase Transition in Li x MnO2Electrochemical and Solid State Letters, 4
E. Ferg, R. Gummow, A. Kock, M. Thackeray (1994)
Spinel Anodes for Lithium‐Ion BatteriesJournal of The Electrochemical Society, 141
Changzheng Wu, Zhenpeng Hu, W. Wang, Miao Zhang, Jinlong Yang, Yi Xie (2008)
Synthetic paramontroseite VO2 with good aqueous lithium-ion battery performance.Chemical communications, 33
R. Gover, A. Bryan, P. Burns, J. Barker (2006)
The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3Solid State Ionics, 177
Y. Kawabe, N. Yabuuchi, Masataka Kajiyama, N. Fukuhara, Tokuo Inamasu, R. Okuyama, I. Nakai, S. Komaba (2012)
A Comparison of Crystal Structures and Electrode Performance between Na2FePO4F and Na2Fe0.5Mn0.5PO4F Synthesized by Solid-State Method for Rechargeable Na-Ion BatteriesElectrochemistry, 80
Haisheng Chen, Thang Cong, Wei Yang, Chunqing Tan, Yongliang Li, Yulong Ding (2009)
Progress in electrical energy storage system: A critical reviewProgress in Natural Science, 19
Jianfeng Qian, Min Zhou, Yuliang Cao, X. Ai, Hanxi Yang (2012)
Nanosized Na4Fe(CN)6/C Composite as a Low‐Cost and High‐Rate Cathode Material for Sodium‐Ion BatteriesAdvanced Energy Materials, 2
M. Pasta, C. Wessells, R. Huggins, Yi Cui (2012)
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storageNature Communications, 3
W. Marsden (2012)
I and J
J. Barker, M. Saidi, Jeffrey Swoyer (2003)
A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 FElectrochemical and Solid State Letters, 6
M. Doeff, Yan-ping Ma, S. Visco, L. Jonghe (1993)
Electrochemical Insertion of Sodium into CarbonJournal of The Electrochemical Society, 140
R. Berthelot, D. Carlier, D. Carlier, C. Delmas, C. Delmas (2011)
Electrochemical investigation of the P2–NaxCoO2 phase diagram.Nature materials, 10 1
F. Sanz, C. Parada, J. Rojo, C. Ruiz-Valero (2001)
Synthesis, Structural Characterization, Magnetic Properties, and Ionic Conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni)Chemistry of Materials, 13
A. Padhi, K. Nanjundaswamy, J. Goodenough (1997)
Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium BatteriesJournal of The Electrochemical Society, 144
Jean-Jacques Braconnier, C. Delmas, C. Fouassier, P. Hagenmuller (1980)
Comportement electrochimique des phases NaxCoO2Materials Research Bulletin, 15
Ashish Rudola, K. Saravanan, C. Mason, P. Balaya (2013)
Na2Ti3O7: an intercalation based anode for sodium-ion battery applicationsJournal of Materials Chemistry, 1
C. Wessells, Sandeep Peddada, R. Huggins, Yi Cui (2011)
Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries.Nano letters, 11 12
J. Goodenough, H. Hong, J. Kafalas (1976)
Fast Na+-ion transport in skeleton structuresMaterials Research Bulletin, 11
H. Zhuo, Xian-you Wang, A. Tang, Zhiming Liu, S. Gamboa, P. Sebastian (2006)
The preparation of NaV1- xCrxPO4F cathode materials for sodium-ion batteryJournal of Power Sources, 160
Yuwon Park, Dong-seon Shin, S. Woo, N. Choi, Kyung-Hee Shin, Seung Oh, Kyu Lee, Sung Hong (2012)
Sodium Terephthalate as an Organic Anode Material for Sodium Ion BatteriesAdvanced Materials, 24
Heejin Kim, Dong Kim, D. Seo, M. Yeom, K. Kang, Do Kim, Yousung Jung (2012)
Ab Initio Study of the Sodium Intercalation and Intermediate Phases in Na0.44MnO2 for Sodium-Ion BatteryChemistry of Materials, 24
P. Serras, V. Palomares, A. Goñi, I. Muro, P. Kubiak, L. Lezama, T. Rojo (2012)
High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2xJournal of Materials Chemistry, 22
K. Trad, D. Carlier, L. Croguennec, A. Wattiaux, M. Amara, C. Delmas (2010)
Structural study of the Li(0.5)Na(0.5)MnFe2(PO4)3 and Li(0.75)Na(0.25)MnFe2(PO4)3 alluaudite phases and their electrochemical properties as positive electrodes in lithium batteries.Inorganic chemistry, 49 22
J. Moring, E. Kostiner (1986)
The crystal structure of NaMnPO4Journal of Solid State Chemistry, 61
K. Hueso, M. Armand, T. Rojo (2013)
High temperature sodium batteries: status, challenges and future trendsEnergy and Environmental Science, 6
C. Delmas, J. Braconnier, C. Fouassier, P. Hagenmuller (1981)
Electrochemical intercalation of sodium in NaxCoO2 bronzesSolid State Ionics
C. Wessells, R. Huggins, Yi Cui (2011)
Copper hexacyanoferrate battery electrodes with long cycle life and high power.Nature communications, 2
Tomoyuki Shiratsuchi, S. Okada, J. Yamaki, T. Nishida (2006)
FePO4 cathode properties for Li and Na secondary cellsJournal of Power Sources, 159
Huilin Pan, Xia Lu, Xiqian Yu, Yong‐Sheng Hu, Hong Li, Xiao‐Qing Yang, Liquan Chen (2013)
Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion BatteriesAdvanced Energy Materials, 3
Á. Caballero, L. Hernán, J. Morales, L. Sánchez, J. Peña, M. Aranda (2002)
Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cellsJournal of Materials Chemistry, 12
J. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, P. Hagenmuller (1971)
Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1)Journal of Solid State Chemistry, 3
A. Mendiboure, C. Delmas, P. Hagenmuller (1985)
Electrochemical intercalation and deintercalation of NaxMnO2 bronzesJournal of Solid State Chemistry, 57
S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai (2012)
Study on the reversible electrode reaction of Na(1-x)Ni(0.5)Mn(0.5)O2 for a rechargeable sodium-ion battery.Inorganic chemistry, 51 11
Lifen Xiao, Yuliang Cao, Jie Xiao, Wen Wang, L. Kovarik, Z. Nie, Jun Liu (2012)
High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications.Chemical communications, 48 27
A. Nagelberg, W. Worrell (1979)
A thermodynamic study of sodium-intercalated TaS2 and TiS2Journal of Solid State Chemistry, 29
C. Ding, T. Nohira, Keisuke Kuroda, R. Hagiwara, Atsushi Fukunaga, Sho-ichiro Sakai, K. Nitta, Shin'ji Inazawa (2013)
NaFSA–C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature rangeJournal of Power Sources, 238
H. Yadegari, A. Jabbari, H. Heli (2011)
An aqueous rechargeable lithium-ion battery based on LiCoO2 nanoparticles cathode and LiV3O8 nanosheets anodeJournal of Solid State Electrochemistry, 16
Premkumar Senguttuvan, G. Rousse, V. Seznec, J. Tarascon, M. Palacín (2011)
Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteriesChemistry of Materials, 23
A. Feltz, S. Barth, M. Andratschke, C. Jäger (1988)
Struktur und ionenleitung in festkörpern V: Struktur und eigenschaften der Verbindungen Na3MnZr(PO4)3 und Na3MgZr(PO4)3Journal of The Less Common Metals, 137
L. Joerissen, J. Garche, C. Fabjan, G. Tomazic (2004)
Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systemsJournal of Power Sources, 127
Xia Lu, Liang Zhao, Xiaoqing He, Ruijuan Xiao, L. Gu, Yong‐Sheng Hu, Hong Li, Zhaoxiang Wang, Xiaofeng Duan, Liquan Chen, J. Maier, Y. Ikuhara (2012)
Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron MicroscopyAdvanced Materials, 24
(2013)
Angew
and as an in
P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher (2010)
Structure and Stability of Sodium Intercalated Phases in Olivine FePO4Chemistry of Materials, 22
M. Nishijima, I. Gocheva, S. Okada, T. Doi, J. Yamaki, T. Nishida (2009)
Cathode properties of metal trifluorides in Li and Na secondary batteriesJournal of Power Sources, 190
L. Shacklette, T. Jow, L. Townsend (1988)
Rechargeable Electrodes from Sodium Cobalt BronzesJournal of The Electrochemical Society, 135
M. Dollé, S. Patoux, M. Doeff (2005)
Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or NiChemistry of Materials, 17
Yong‐Sheng Hu, Weihe Kong, Zhaoxiang Wang, Hong Li, Xuejie Huang, Liquan Chen (2004)
Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC AdditiveElectrochemical and Solid State Letters, 7
Heejin Kim, R. Shakoor, Chansu Park, S. Lim, Joo‐Seong Kim, Y. Jo, Woosuk Cho, K. Miyasaka, R. Kahraman, Yousung Jung, J. Choi (2013)
Na2FeP2O7 as a Promising Iron‐Based Pyrophosphate Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical StudyAdvanced Functional Materials, 23
P. Barpanda, Tiannan Ye, S. Nishimura, Shinka Nishimura, Sai-Cheong Chung, Yuki Yamada, Yuki Yamada, M. Okubo, M. Okubo, Haoshen Zhou, Haoshen Zhou, A. Yamada, A. Yamada (2012)
Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteriesElectrochemistry Communications, 24
(2013)
Electrochim
A. Hayashi, Kousuke Noi, A. Sakuda, M. Tatsumisago (2012)
Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteriesNature Communications, 3
A. Padhi, K. Nanjundaswamy, C. Masquelier, S. Okada, J. Goodenough (1997)
Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron PhosphatesJournal of The Electrochemical Society, 144
R. Shakoor, D. Seo, Hyungsub Kim, Young‐Uk Park, Jongsoon Kim, Sung-Wook Kim, Hyeokjo Gwon, Seongsu Lee, K. Kang (2012)
A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteriesJournal of Materials Chemistry, 22
Yong‐Sheng Hu, Weihe Kong, Zhaoxiang Wang, Xuejie Huang, Liquan Chen (2005)
Tetrachloroethylene as new film-forming additive to propylene carbonate-based electrolytes for lithium ion batteries with graphitic anodeSolid State Ionics, 176
R. Hammond, J. Barbier (1996)
Structural chemistry of NaCoPO4Acta Crystallographica Section B-structural Science, 52
Haiyan Chen, M. Armand, G. Demailly, F. Dolhem, P. Poizot, J. Tarascon (2008)
From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries.ChemSusChem, 1 4
P. Barpanda, Tiannan Ye, M. Avdeev, Sai-Cheong Chung, A. Yamada (2013)
A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteriesJournal of Materials Chemistry, 1
Bon‐Ryul Koo, S. Chattopadhyay, T. Shibata, V. Prakapenka, Christopher Johnson, T. Rajh, E. Shevchenko (2013)
Intercalation of Sodium Ions into Hollow Iron Oxide NanoparticlesChemistry of Materials, 25
Y. Takeda, K. Nakahara, M. Nishijima, N. Imanishi, O. Yamamoto, M. Takano, R. Kanno (1994)
Sodium deintercalation from sodium iron oxideMaterials Research Bulletin, 29
Donghan Kim, Sun‐Ho Kang, Michael Slater, Shawn Rood, J. Vaughey, N. Karan, M. Balasubramanian, C. Johnson (2011)
Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide CathodesAdvanced Energy Materials, 1
B. Ellis, W. Makahnouk, Y. Makimura, Kathryn Toghill, L. Nazar (2007)
A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries.Nature materials, 6 10
Michael Slater, Donghan Kim, Eungje Lee, C. Johnson (2013)
Sodium‐Ion BatteriesAdvanced Functional Materials, 23
A. Ponrouch, Elena Marchante, M. Courty, J. Tarascon, M. Palacín (2012)
In search of an optimized electrolyte for Na-ion batteriesEnergy and Environmental Science, 5
S. Miyazaki, S. Kikkawa, M. Koizumi (1983)
Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM′O2 (M′ Cr, Fe, Co, Ni)Synthetic Metals, 6
G. Hautier, Anubhav Jain, S. Ong, Byoungwoo Kang, C. Moore, R. Doe, G. Ceder (2011)
Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio CalculationsChemistry of Materials, 23
Jiayan Luo, Wang-jun Cui, P. He, Yongyao Xia (2010)
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.Nature chemistry, 2 9
K. Zaghib, J. Trottier, P. Hovington, F. Brochu, A. Guerfi, A. Mauger, C. Julien (2011)
Characterization of Na-based phosphate as electrode materials for electrochemical cellsThe Lancet
Jiangfeng Qian, Xianyong Wu, Yuliang Cao, X. Ai, Hanxi Yang (2013)
High capacity and rate capability of amorphous phosphorus for sodium ion batteries.Angewandte Chemie, 52 17
Xiaochuan Lu, Guanguang Xia, J. Lemmon, Z. Yang (2010)
Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectivesJournal of Power Sources, 195
T. Richardson (2003)
Phosphate-stabilized lithium intercalation compoundsJournal of Power Sources, 119
S. Komaba, T. Nakayama, A. Ogata, T. Shimizu, Chikara Takei, S. Takada, A. Hokura, I. Nakai (2009)
Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2, 16
J. Molenda, C. Delmas, P. Hagenmuller (1983)
Electronic and electrochemical properties of NaxCoO2−y cathodeSolid State Ionics
Yang Sun, Liang Zhao, Huilin Pan, Xia Lu, L. Gu, Yong‐Sheng Hu, Hong Li, M. Armand, Y. Ikuhara, Liquan Chen, Xuejie Huang (2013)
Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteriesNature Communications, 4
Sung-Wook Kim, D. Seo, Xiaohua Ma, G. Ceder, K. Kang (2012)
Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion BatteriesAdvanced Energy Materials, 2
D. Hamani, M. Ati, J. Tarascon, P. Rozier (2011)
NaxVO2 as possible electrode for Na-ion batteriesElectrochemistry Communications, 13
Hui Xiong, Michael Slater, M. Balasubramanian, Christopher Johnson, T. Rajh (2011)
Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion BatteriesJournal of Physical Chemistry Letters, 2
Qian Sun, Qin-Qi Ren, Hong Li, Z. Fu (2011)
High capacity Sb2O4 thin film electrodes for rechargeable sodium batteryElectrochemistry Communications, 13
Yonglin Liu, Yunhua Xu, Xiaogang Han, Christopher Pellegrinelli, Yujie Zhu, Hongli Zhu, J. Wan, Alex Chung, Oeyvind Vaaland, Chunsheng Wang, Liangbing Hu (2012)
Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes.Nano letters, 12 11
Zelang Jian, Liangfu Zhao, Huilin Pan, Yong‐Sheng Hu, Hong Li, Wen Chen, Liquan Chen (2012)
Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteriesElectrochemistry Communications, 14
N. Yabuuchi, H. Yoshida, S. Komaba (2012)
Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium BatteriesElectrochemistry, 80
Yuhao Lu, Longde Wang, Jinguang Cheng, J. Goodenough (2012)
Prussian blue: a new framework of electrode materials for sodium batteries.Chemical communications, 48 52
Boštjan Genorio, Klemen Pirnat, R. Cerc-Korošec, R. Dominko, M. Gaberšček (2010)
Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries.Angewandte Chemie, 49 40
Jiangfeng Qian, Yao Chen, Lin Wu, Yuliang Cao, X. Ai, Hanxi Yang (2012)
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.Chemical communications, 48 56
B. Ratnakumar, S. Stefano, R. Williams, G. Nagasubramanian, C. Bankston (1990)
Organic cathode materials in sodium batteriesJournal of Applied Electrochemistry, 20
Liumin Suo, Yong‐Sheng Hu, Hong Li, M. Armand, Liquan Chen (2013)
A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteriesNature Communications, 4
Yuliang Cao, Lifen Xiao, Wei Wang, D. Choi, Z. Nie, Jianguo. Yu, L. Saraf, Z. Yang, Jun Liu (2011)
Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle LifeAdvanced Materials, 23
P. Thomas, D. Billaud (2002)
Electrochemical insertion of sodium into hard carbonsElectrochimica Acta, 47
Zelang Jian, Wenze Han, Xia Lu, Huaixin Yang, Yong‐Sheng Hu, Jing Zhou, Zhibin Zhou, Jianqi Li, Wen Chen, Dongfeng Chen, Liquan Chen (2013)
Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion BatteriesAdvanced Energy Materials, 3
Longde Wang, Yuhao Lu, Jue Liu, Mao-wen Xu, Jinguang Cheng, Dawei Zhang, J. Goodenough (2013)
A superior low-cost cathode for a Na-ion battery.Angewandte Chemie, 52 7
Hong Li, Zhaoxiang Wang, Liquan Chen, Xuejie Huang (2009)
Research on Advanced Materials for Li‐ion BatteriesAdvanced Materials, 21
Heng-guo Wang, Zhong Wu, F. Meng, Delong Ma, Xiao-lei Huang, Limin Wang, Xin-bo Zhang (2013)
Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries.ChemSusChem, 6 1
G. Hautier, Anubhav Jain, Hailong Chen, C. Moore, S. Ong, G. Ceder (2011)
Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computationsJournal of Materials Chemistry, 21
S. Lim, Heejin Kim, R. Shakoor, Yousung Jung, J. Choi (2012)
Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical StudyJournal of The Electrochemical Society, 159
Room-temperature stationary sodium-ion batteries have attracted great attention particularly in large-scale electric energy storage applications for renewable energy and smart grid because of the huge abundant sodium resources and low cost. In this article, a variety of electrode materials including cathodes and anodes as well as electrolytes for room-temperature stationary sodium-ion batteries are briefly reviewed. We compare the difference in storage behavior between Na and Li in their analogous electrodes and summarize the sodium storage mechanisms in the available electrode materials. This review also includes some new results from our group and our thoughts on developing new materials. Some perspectives and directions on designing better materials for practical applications are pointed out based on knowledge from the literature and our experience. Through this extensive literature review, the search for suitable electrode and electrolyte materials for stationary sodium-ion batteries is still challenging. However, after intensive research efforts, we believe that low-cost, long-life and room-temperature sodium-ion batteries would be promising for applications in large-scale energy storage system in the near future.
Energy & Environmental Science – Royal Society of Chemistry
Published: Jul 17, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.