Access the full text.
Sign up today, get DeepDyve free for 14 days.
N. Hudak, G. Amatucci (2011)
Energy Harvesting and Storage with Lithium-Ion Thermogalvanic CellsJournal of The Electrochemical Society, 158
J. Sootsman, D. Chung, M. Kanatzidis (2009)
New and old concepts in thermoelectric materials.Angewandte Chemie, 48 46
J. Newman (1995)
Thermoelectric effects in electrochemical systemsIndustrial & Engineering Chemistry Research, 34
Jizhong Song, Jianhai Li, Jiayue Xu, H. Zeng (2014)
Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics.Nano letters, 14 11
W. Zeier, Alex Zevalkink, Zachary Gibbs, Geoffroy Hautier, Mercouri Kanatzidis, G. Snyder (2016)
Denken wie ein Chemiker: Thermoelektrika intuitivAngewandte Chemie, 128
Shaowu Pan, Zhibin Yang, Peining Chen, Jue Deng, Houpu Li, Huisheng Peng (2014)
Wearable solar cells by stacking textile electrodes.Angewandte Chemie, 53 24
W. Zeier, A. Zevalkink, Z. Gibbs, G. Hautier, M. Kanatzidis, G. Snyder (2016)
Thinking Like a Chemist: Intuition in Thermoelectric Materials.Angewandte Chemie, 55 24
T. Quickenden, C. Vernon (1986)
Thermogalvanic conversion of heat to electricitySolar Energy, 36
Jing Ren, Wenyu Bai, G. Guan, Ye Zhang, Huisheng Peng (2013)
Flexible and Weaveable Capacitor Wire Based on a Carbon Nanocomposite FiberAdvanced Materials, 25
Jaemin Kim, Donghee Son, Mincheol Lee, Changyeong Song, Jun‐Kyul Song, Ja Koo, Dong Lee, Hyung Shim, Ji Kim, Minbaek Lee, T. Hyeon, Dae‐Hyeong Kim (2016)
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinementScience Advances, 2
Hyeongwook Im, Taewoo Kim, Hyelynn Song, Jongho Choi, J. Park, R. Ovalle-Robles, H. Yang, K. Kihm, R. Baughman, Hong Lee, T. Kang, Y. Kim (2016)
High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodesNature Communications, 7
Hyeongwook Im, H. Moon, Jeong Lee, In-Young Chung, T. Kang, Y. Kim (2014)
Flexible thermocells for utilization of body heatNano Research, 7
Tao Chen, Longbin Qiu, H. Kia, Zhibin Yang, Huisheng Peng (2012)
Designing Aligned Inorganic Nanotubes at the Electrode Interface: Towards Highly Efficient Photovoltaic WiresAdvanced Materials, 24
G. Snyder, James Lim, Chen-Kuo Huang, J. Fleurial (2003)
Thermoelectric microdevice fabricated by a MEMS-like electrochemical processNature Materials, 2
Y. Nagasaka, A. Nagashima (1981)
ABSOLUTE MEASUREMENT OF THE THERMAL CONDUCTIVITY OF ELECTRICALLY CONDUCTING LIQUIDS BY THE TRANSIENT HOT-WIRE METHOD (THERMAL CONDUCTIVITY OF AN AQUEOUS NaCl SOLUTION AT HIGH PRESSURE).
Dan Zhao, Hui Wang, Z. Khan, Jincan Chen, R. Gabrielsson, M. Jonsson, M. Berggren, X. Crispin (2016)
Ionic thermoelectric supercapacitorsEnergy and Environmental Science, 9
Zhong Wang (2013)
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors.ACS nano, 7 11
T. Quickenden, Y. Mua (1995)
A Review of Power Generation in Aqueous Thermogalvanic CellsJournal of The Electrochemical Society, 142
Qize Zhong, Junwen Zhong, Bin Hu, Qiyi Hu, Jun Zhou, Zhong Wang (2013)
A paper-based nanogenerator as a power source and active sensorEnergy and Environmental Science, 6
Junwen Zhong, Yan Zhang, Qize Zhong, Qiyi Hu, Bin Hu, Zhong Wang, Jun Zhou (2014)
Fiber-based generator for wearable electronics and mobile medication.ACS nano, 8 6
V. Leonov, T. Torfs, P. Fiorini, C. Hoof (2007)
Thermoelectric Converters of Human Warmth for Self-Powered Wireless Sensor NodesIEEE Sensors Journal, 7
M. Rikukawa, K. Sanui (2000)
Proton-conducting polymer electrolyte membranes based on hydrocarbon polymersProgress in Polymer Science, 25
A. Sokirko (1994)
Theoretical study of thermogalvanic cells in steady stateElectrochimica Acta, 39
S. Kim, J. We, B. Cho (2014)
A wearable thermoelectric generator fabricated on a glass fabricEnergy and Environmental Science, 7
Yifan Xu, Yang Zhao, Jing Ren, Ye Zhang, Huisheng Peng (2016)
An All-Solid-State Fiber-Shaped Aluminum-Air Battery with Flexibility, Stretchability, and High Electrochemical Performance.Angewandte Chemie, 55 28
Joseph Sootsman, D. Chung, Mercouri Kanatzidis (2009)
Alte und neue Konzepte für thermoelektrische MaterialienAngewandte Chemie, 121
G. Snyder, E. Toberer (2008)
Complex thermoelectric materials.Nature materials, 7 2
J. Oh, Ji Lee, Sun Han, S. Chae, E. Bae, Y. Kang, W. Choi, S. Cho, Jeong-O Lee, H. Baik, Tae Lee (2016)
Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generatorsEnergy and Environmental Science, 9
W. Gao, S. Emaminejad, H. Nyein, Samyuktha Challa, Kevin Chen, Austin Peck, H. Fahad, H. Ota, Hiroshi Shiraki, D. Kiriya, D. Lien, G. Brooks, Ronald Davis, A. Javey (2016)
Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature, 529
Xu Xiao, Xu Xiao, Tianqi Li, Zehua Peng, Huanyu Jin, Qize Zhong, Qiyi Hu, B. Yao, Qiu-ping Luo, C. Zhang, L. Gong, Jian Chen, Y. Gogotsi, Jun Zhou (2014)
Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitorsNano Energy, 6
Marianne Lossec, B. Multon, H. Ahmed (2013)
Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heatEnergy Conversion and Management, 68
T. Kang, S. Fang, M. Kozlov, Carter Haines, Na Li, Yong Kim, Yongsheng Chen, R. Baughman (2012)
Electrical Power From Nanotube and Graphene Electrochemical Thermal Energy HarvestersAdvanced Functional Materials, 22
Han‐Ki Kim, Suk Cho, Y. Ok, T. Seong, Y. Yoon (2003)
All solid-state rechargeable thin-film microsupercapacitor fabricated with tungsten cosputtered ruthenium oxide electrodesJournal of Vacuum Science & Technology B, 21
Z. Khan, J. Edberg, M. Hamedi, R. Gabrielsson, H. Granberg, L. Wågberg, Isak Engquist, M. Berggren, X. Crispin (2016)
Thermoelectric Polymers and their Elastic AerogelsAdvanced Materials, 28
Francisco Suarez, Amin Nozariasbmarz, D. Vashaee, M. Öztürk (2016)
Designing thermoelectric generators for self-powered wearable electronicsEnergy and Environmental Science, 9
Alex Chortos, Zhenan Bao (2014)
Skin-inspired electronic devicesMaterials Today, 17
Renchong Hu, B. Cola, N. Haram, J. Barisci, Sergey Lee, S. Stoughton, G. Wallace, C. Too, Michael Thomas, Adrian Gestos, M. Cruz, J. Ferraris, A. Zakhidov, R. Baughman (2010)
Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.Nano letters, 10 3
Tao Chen, Longbin Qiu, Zhenbo Cai, F. Gong, Zhibin Yang, Zhong‐Sheng Wang, Huisheng Peng (2012)
Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells.Nano letters, 12 5
C. Keplinger, Jeong-Yun Sun, C. Foo, Philipp Rothemund, G. Whitesides, Z. Suo (2013)
Stretchable, Transparent, Ionic ConductorsScience, 341
Xu Peng, Huili Liu, Qin Yin, Junchi Wu, Pengzuo Chen, Guangzhao Zhang, Guangming Liu, Changzheng Wu, Yi Xie (2016)
A zwitterionic gel electrolyte for efficient solid-state supercapacitorsNature Communications, 7
M. Romano, Sanjeev Gambhir, J. Razal, Adrian Gestos, G. Wallace, Jun Chen (2012)
Novel carbon materials for thermal energy harvestingJournal of Thermal Analysis and Calorimetry, 109
M. Romano, Na Li, Dennis Antiohos, J. Razal, A. Nattestad, S. Beirne, S. Fang, Yongsheng Chen, R. Jalili, G. Wallace, R. Baughman, Jun Chen (2013)
Carbon Nanotube – Reduced Graphene Oxide Composites for Thermal Energy Harvesting ApplicationsAdvanced Materials, 25
Y. Kuzminskii, V. Zasukha, G. Kuzminskaya (1994)
Thermoelectric effects in electrochemical systems. Nonconventional thermogalvanic cellsJournal of Power Sources, 52
S. Bux, J. Fleurial, R. Kaner (2010)
Nanostructured materials for thermoelectric applications.Chemical communications, 46 44
Yunqi Li, B. Bastakoti, Victor Malgras, Cuiling Li, Jing Tang, Jung Kim, Y. Yamauchi (2015)
Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.Angewandte Chemie, 54 38
Converting body heat into electricity is a promising strategy for supplying power to wearable electronics. To avoid the limitations of traditional solid‐state thermoelectric materials, such as frangibility and complex fabrication processes, we fabricated two types of thermogalvanic gel electrolytes with positive and negative thermo‐electrochemical Seebeck coefficients, respectively, which correspond to the n‐type and p‐type elements of a conventional thermoelectric generator. Such gel electrolytes exhibit not only moderate thermoelectric performance but also good mechanical properties. Based on these electrolytes, a flexible and wearable thermocell was designed with an output voltage approaching 1 V by utilizing body heat. This work may offer a new train of thought for the development of self‐powered wearable systems by harvesting low‐grade body heat.
Angewandte Chemie International Edition – Wiley
Published: Sep 19, 2016
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.