Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor

Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel... R207910 (also known as TMC207) is an investigational drug currently in clinical studies for the treatment of multidrug-resistant (MDR) tuberculosis. It has a high degree of antimycobacterial activity and is equally effective against drug-susceptible and MDR Mycobacterium tuberculosis isolates. In the present study, we characterized the development of resistance to R207910 in vitro . Ninety-seven independent R207910-resistant mutants were selected from seven different clinical isolates of M. tuberculosis (three drug-susceptible and four MDR isolates) at 10 x , 30 x , and 100 x the MIC. At a concentration of 0.3 mg/liter (10 x the MIC), the mutation rates ranged from 4.7 x 10 –7 to 8.9 x 10 –9 mutations per cell per division, and at 1.0 mg/liter (30 x the MIC) the mutation rate ranged from 3.9 x 10 –8 to 2.4 x 10 –9 . No resistant mutants were obtained at 3 mg/liter (100 x the MIC). The level of resistance ranged from 0.12 to 3.84 mg/liter for the mutants identified; these concentrations represent 4- to 128-fold increases in the MICs. For 53 of the resistant mutants, the atpE gene, which encodes a transmembrane and oligomeric C subunit of the ATP synthase and which was previously shown to be involved in resistance, was sequenced. For 15/53 mutants, five different point mutations resulting in five different amino acid substitutions were identified in the atpE gene. For 38/53 mutants, no atpE mutations were found and sequencing of the complete F0 ATP synthase operon ( atpB , atpE , and atpF genes) and the F1 ATP synthase operon ( atpH , atpA , atpG , atpD , and atpC genes) from three mutants revealed no mutations, indicating other, alternative resistance mechanisms. Competition assays showed no measurable reduction in the fitness of the mutants compared to that of the isogenic wild types. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Antimicrobial Agents and Chemotherapy American Society For Microbiology

Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor

Rates and Mechanisms of Resistance Development in Mycobacterium tuberculosis to a Novel Diarylquinoline ATP Synthase Inhibitor

Antimicrobial Agents and Chemotherapy , Volume 54 (3): 1022 – Mar 1, 2010

Abstract

R207910 (also known as TMC207) is an investigational drug currently in clinical studies for the treatment of multidrug-resistant (MDR) tuberculosis. It has a high degree of antimycobacterial activity and is equally effective against drug-susceptible and MDR Mycobacterium tuberculosis isolates. In the present study, we characterized the development of resistance to R207910 in vitro . Ninety-seven independent R207910-resistant mutants were selected from seven different clinical isolates of M. tuberculosis (three drug-susceptible and four MDR isolates) at 10 x , 30 x , and 100 x the MIC. At a concentration of 0.3 mg/liter (10 x the MIC), the mutation rates ranged from 4.7 x 10 –7 to 8.9 x 10 –9 mutations per cell per division, and at 1.0 mg/liter (30 x the MIC) the mutation rate ranged from 3.9 x 10 –8 to 2.4 x 10 –9 . No resistant mutants were obtained at 3 mg/liter (100 x the MIC). The level of resistance ranged from 0.12 to 3.84 mg/liter for the mutants identified; these concentrations represent 4- to 128-fold increases in the MICs. For 53 of the resistant mutants, the atpE gene, which encodes a transmembrane and oligomeric C subunit of the ATP synthase and which was previously shown to be involved in resistance, was sequenced. For 15/53 mutants, five different point mutations resulting in five different amino acid substitutions were identified in the atpE gene. For 38/53 mutants, no atpE mutations were found and sequencing of the complete F0 ATP synthase operon ( atpB , atpE , and atpF genes) and the F1 ATP synthase operon ( atpH , atpA , atpG , atpD , and atpC genes) from three mutants revealed no mutations, indicating other, alternative resistance mechanisms. Competition assays showed no measurable reduction in the fitness of the mutants compared to that of the isogenic wild types.

Loading next page...
 
/lp/american-society-for-microbiology/rates-and-mechanisms-of-resistance-development-in-mycobacterium-Zb0DwKq1OY

References (37)

Publisher
American Society For Microbiology
Copyright
Copyright © 2010 by the American Society For Microbiology.
ISSN
0066-4804
eISSN
0066-4804
DOI
10.1128/AAC.01611-09
Publisher site
See Article on Publisher Site

Abstract

R207910 (also known as TMC207) is an investigational drug currently in clinical studies for the treatment of multidrug-resistant (MDR) tuberculosis. It has a high degree of antimycobacterial activity and is equally effective against drug-susceptible and MDR Mycobacterium tuberculosis isolates. In the present study, we characterized the development of resistance to R207910 in vitro . Ninety-seven independent R207910-resistant mutants were selected from seven different clinical isolates of M. tuberculosis (three drug-susceptible and four MDR isolates) at 10 x , 30 x , and 100 x the MIC. At a concentration of 0.3 mg/liter (10 x the MIC), the mutation rates ranged from 4.7 x 10 –7 to 8.9 x 10 –9 mutations per cell per division, and at 1.0 mg/liter (30 x the MIC) the mutation rate ranged from 3.9 x 10 –8 to 2.4 x 10 –9 . No resistant mutants were obtained at 3 mg/liter (100 x the MIC). The level of resistance ranged from 0.12 to 3.84 mg/liter for the mutants identified; these concentrations represent 4- to 128-fold increases in the MICs. For 53 of the resistant mutants, the atpE gene, which encodes a transmembrane and oligomeric C subunit of the ATP synthase and which was previously shown to be involved in resistance, was sequenced. For 15/53 mutants, five different point mutations resulting in five different amino acid substitutions were identified in the atpE gene. For 38/53 mutants, no atpE mutations were found and sequencing of the complete F0 ATP synthase operon ( atpB , atpE , and atpF genes) and the F1 ATP synthase operon ( atpH , atpA , atpG , atpD , and atpC genes) from three mutants revealed no mutations, indicating other, alternative resistance mechanisms. Competition assays showed no measurable reduction in the fitness of the mutants compared to that of the isogenic wild types.

Journal

Antimicrobial Agents and ChemotherapyAmerican Society For Microbiology

Published: Mar 1, 2010

There are no references for this article.