Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (G0) and to pass through the G1/S transition of the cell cycle1–6. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of G1 exit7, functionally links Ras to passage through the G1 phase. Inactivation of Ras in cycling cells caused a decline in cyclin D1 protein levels, accumulation of the hypophosphorylated, growth-suppressive form of Rb, and G1 arrest. When Rb was disrupted either genetically or biochemically, cells failed to arrest in G1 following Ras inactivation. In contrast, inactivation of Ras in quiescent cells prevented growth-factor induction of both immediate-early gene transcription and exit from G0 in an Rb-independent manner. These data suggest that Rb is an essential G1-specific mediator that links Ras-dependent mitogenic signalling to cell-cycle regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein

Loading next page...
 
/lp/springer-journals/ras-signalling-linked-to-the-cell-cycle-machinery-by-the-a1hAA4NPCw

References (32)

Publisher
Springer Journals
Copyright
Copyright © 1997 by Nature Publishing Group
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/386177a0
Publisher site
See Article on Publisher Site

Abstract

The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (G0) and to pass through the G1/S transition of the cell cycle1–6. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of G1 exit7, functionally links Ras to passage through the G1 phase. Inactivation of Ras in cycling cells caused a decline in cyclin D1 protein levels, accumulation of the hypophosphorylated, growth-suppressive form of Rb, and G1 arrest. When Rb was disrupted either genetically or biochemically, cells failed to arrest in G1 following Ras inactivation. In contrast, inactivation of Ras in quiescent cells prevented growth-factor induction of both immediate-early gene transcription and exit from G0 in an Rb-independent manner. These data suggest that Rb is an essential G1-specific mediator that links Ras-dependent mitogenic signalling to cell-cycle regulation.

Journal

NatureSpringer Journals

Published: Mar 13, 1997

There are no references for this article.