Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Kavan, M. Grätzel, S. Gilbert, Andreas Klemenz, H. Scheel (1996)
ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASEJournal of the American Chemical Society, 118
M. Nazeeruddin, P. Péchy, T. Renouard, S. Zakeeruddin, R. Humphry‐Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, Glen Deacon, C. Bignozzi, Michael Gra (2001)
Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells.Journal of the American Chemical Society, 123 8
A. Fisher, L. Peter, E. Ponomarev, A. Walker, K. Wijayantha (2000)
Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar CellsJournal of Physical Chemistry B, 104
S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, S. Yanagida (2002)
Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar CellsJournal of Physical Chemistry B, 106
Peng Wang, S. Zakeeruddin, J. Moser, M. Nazeeruddin, T. Sekiguchi, M. Grätzel (2003)
A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyteNature Materials, 2
G. Kron, T. Egerter, A. Werner, U. Rau (2003)
Electronic Transport in Dye-Sensitized Nanoporous TiO2 Solar CellsComparison of Electrolyte and Solid-State DevicesJournal of Physical Chemistry B, 107
J. Nelson (1999)
Continuous-time random-walk model of electron transport in nanocrystalline TiO 2 electrodesPhysical Review B, 59
K. Tennakone, G. Kumara, I. Kottegoda, V. Perera (1999)
An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zincChemical Communications
J. and, A. Frank (2001)
Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling StudiesJournal of Physical Chemistry B, 105
N. Anderson, X. Ai, T. Lian (2003)
Electron Injection Dynamics from Ru Polypyridyl Complexes to ZnO Nanocrystalline Thin FilmsJournal of Physical Chemistry B, 107
T. Renouard, R. Fallahpour, Md. Nazeeruddin, R. Humphry‐Baker, S. Gorelsky, A. Lever, M. Grätzel (2002)
Novel ruthenium sensitizers containing functionalized hybrid tetradentate ligands: synthesis, characterization, and INDO/S analysis.Inorganic chemistry, 41 2
N. Kopidakis, E. Schiff, N. Park, J. Lagemaat, A. Frank (2000)
Ambipolar Diffusion of Photocarriers in Electrolyte-Filled, Nanoporous TiO2†Journal of Physical Chemistry B, 104
P Wagner, R Helbig (1974)
Hall effect and anisotropy of the mobility of the electrons in zinc oxideJ. Phys. Chem. Sol., 35
B. O'Regan, M. Grätzel (1991)
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 filmsNature, 353
P. Wagner, R. Helbig (1974)
Halleffekt und anisotropie der beweglichkeit der elektronen in ZnOJournal of Physics and Chemistry of Solids, 35
J. Krüger, R. Plass, M. Grätzel, P. Cameron, L. Peter (2003)
Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopyJournal of Physical Chemistry B, 107
A. Frank, N. Kopidakis, J. Lagemaat (2004)
Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic propertiesCoordination Chemistry Reviews, 248
T. Oekermann, Dongshe Zhang, Tsukasa Yoshida, H. Minoura (2004)
Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallizationJournal of Physical Chemistry B, 108
Lori Greene, M. Law, J. Goldberger, Franklin Kim, Justin Johnson, Yanfeng Zhang, R. Saykally, P. Yang (2003)
Low-temperature wafer-scale production of ZnO nanowire arrays.Angewandte Chemie, 42 26
W. Huynh, J. Dittmer, A. Alivisatos (2002)
Hybrid Nanorod-Polymer Solar CellsScience, 295
K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa (2003)
Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cellsNew Journal of Chemistry, 27
K. Keis, Eva Magnusson, H. Lindström, S. Lindquist, A. Hagfeldt (2002)
A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodesSolar Energy Materials and Solar Cells, 73
K. Benkstein, N. Kopidakis, J. Lagemaat, A. Frank (2003)
Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cellsJournal of Physical Chemistry B, 107
H. Rensmo, K. Keis, H. Lindström, S. Södergren, Anita Solbrand, A. Hagfeldt, S. Lindquist, Ling-Chang Wang, M. Muhammed (1997)
High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO ElectrodesJournal of Physical Chemistry B, 101
N. Park, M. Kang, K. Kim, K. Ryu, S. Chang, D. Kim, J. Lagemaat, K. Benkstein, A. Frank (2004)
Morphological and photoelectrochemical characterization of core-shell nanoparticle films for dye-sensitized solar cells: Zn-O type shell on SnO2 and TiO2 cores.Langmuir : the ACS journal of surfaces and colloids, 20 10
(2003)
AcknowledgementsPsychoneuroendocrinology, 28
N. Kopidakis, K. Benkstein, J. Lagemaat, A. Frank (2003)
Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar CellsJournal of Physical Chemistry B, 107
B. Gregg (2003)
Excitonic Solar CellsJournal of Physical Chemistry B, 107
V. Noack, H. Weller, A. Eychmüller (2002)
Electron Transport in Particulate ZnO Electrodes: A Simple ApproachJournal of Physical Chemistry B, 106
Excitonic solar cells 1 —including organic, hybrid organic–inorganic and dye-sensitized cells (DSCs)—are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient 2 and stable 3 excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array.
Nature Materials – Springer Journals
Published: May 15, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.