Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The cost of antibiotic resistance--from the perspective of a bacterium.

The cost of antibiotic resistance--from the perspective of a bacterium. The possession of an antibiotic resistance gene clearly benefits a bacterium when the corresponding antibiotic is present. But does the resistant bacterium suffer a cost of resistance (i.e. a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put antibiotic resistance genes into naïve bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments have shown that the cost of antibiotic resistance may be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ciba Foundation symposium Pubmed

The cost of antibiotic resistance--from the perspective of a bacterium.

Ciba Foundation symposium , Volume 207: -127089 – Jul 29, 1997

The cost of antibiotic resistance--from the perspective of a bacterium.


Abstract

The possession of an antibiotic resistance gene clearly benefits a bacterium when the corresponding antibiotic is present. But does the resistant bacterium suffer a cost of resistance (i.e. a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put antibiotic resistance genes into naïve bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments have shown that the cost of antibiotic resistance may be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.

 
/lp/pubmed/the-cost-of-antibiotic-resistance-from-the-perspective-of-a-bacterium-ahVmKXrrrC

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0300-5208
DOI
10.1002/9780470515358.ch9
pmid
9189639

Abstract

The possession of an antibiotic resistance gene clearly benefits a bacterium when the corresponding antibiotic is present. But does the resistant bacterium suffer a cost of resistance (i.e. a reduction in fitness) when the antibiotic is absent? If so, then one strategy to control the spread of resistance would be to suspend the use of a particular antibiotic until resistant genotypes declined to low frequency. Numerous studies have indeed shown that resistant genotypes are less fit than their sensitive counterparts in the absence of antibiotic, indicating a cost of resistance. But there is an important caveat: these studies have put antibiotic resistance genes into naïve bacteria, which have no evolutionary history of association with the resistance genes. An important question, therefore, is whether bacteria can overcome the cost of resistance by evolving adaptations that counteract the harmful side-effects of resistance genes. In fact, several experiments have shown that the cost of antibiotic resistance may be substantially diminished, even eliminated, by evolutionary changes in bacteria over rather short periods of time. As a consequence of this adaptation of bacteria to their resistance genes, it becomes increasingly difficult to eliminate resistant genotypes simply by suspending the use of antibiotics.

Journal

Ciba Foundation symposiumPubmed

Published: Jul 29, 1997

References